summaryrefslogtreecommitdiffstats
path: root/vorlagen/thesis/src/kapitel_A.tex
diff options
context:
space:
mode:
Diffstat (limited to 'vorlagen/thesis/src/kapitel_A.tex')
-rw-r--r--vorlagen/thesis/src/kapitel_A.tex12
1 files changed, 6 insertions, 6 deletions
diff --git a/vorlagen/thesis/src/kapitel_A.tex b/vorlagen/thesis/src/kapitel_A.tex
index bdfd07a..21f20e4 100644
--- a/vorlagen/thesis/src/kapitel_A.tex
+++ b/vorlagen/thesis/src/kapitel_A.tex
@@ -147,7 +147,7 @@ correct free ARFCN channel,in this case 877.
arfcn 877
\end{lstlisting}
The ARFCN channel value can be
-calculated using the given formula in \ref{eq:arfcn}, where $f_{start}$
+calculated using the given formula in \eqref{eq:arfcn}, where $f_{start}$
is the starting frequency of the uplink bandwitdh for DCS1800,
$f_{CB}$ is the channel bandwidth and \textit{Offset} is the offset\footnote{
A table with frequency channels can be found at the following URL:
@@ -228,7 +228,7 @@ expressed in decimal degrees and are bounded by \textpm90\textdegree and
whereas negative are south of the equator. It is alike for longitude coordinates, positive
longitudes are east of Prime Meridian and negative are west of the Prime Meridian.
If the position in decimal degrees of the BTS is unknown, it is straightforward to derive
-them using the formula given in \ref{eq:dd}, where $D$ are degrees, $M$ are
+them using the formula given in \eqref{eq:dd}, where $D$ are degrees, $M$ are
minutes and $S$ are seconds\footnote{An online converter of the Federal
Communication Commission can be used as well to convert from degrees, minutes
and seconds to decimal degrees and vice versa
@@ -276,11 +276,11 @@ This shape can be described using an
ellipsoid point with altitude and uncertainty ellipsoid. \todo{CHECK IF THIS IS CORRECT}
The uncertainty of
the latitude and longitude correctness can be described
-using equation \ref{eq:unclatlong} \citep{3gppequations}. The uncertainty of
+using equation \eqref{eq:unclatlong} \citep{3gppequations}. The uncertainty of
$r$ is expressed in meters, it defines how accurate is the specified location
of the BTS. In the configuration file, $K$ is set to 7, which corresponds to
$r$ = 9.4872 m. Instead of using the integer parameter $K$ as the known variable,
-the equation \ref{eq:unclatlong} can be rewritten as in \ref{eq:unclatlongnew},
+the equation \eqref{eq:unclatlong} can be rewritten as in \eqref{eq:unclatlongnew},
where we can get the integer value $K$ for a previously selected $r$.
\begin{equation}
\label{eq:unclatlong}
@@ -345,10 +345,10 @@ Value of $K$ & Value of uncertainty $r$\\
\end{table}
Altitude uncertainty can be described using the same Binomial expansion method,
-as given in \ref{eq:uncalt},
+as given in \eqref{eq:uncalt},
however with altered constant values \citep{3gppequations}. The altitude uncertainty ranges between 0 m and
990.5 m ($h\in[0,990.5]\, \mathrm{m}$). Although the same constant name $K$ is used, it
-describes the altitude uncertainty, \ref{eq:uncaltnew}.
+describes the altitude uncertainty, \eqref{eq:uncaltnew}.
\begin{equation}
\label{eq:uncalt}