
Team Project

�Software For Self-Testing Of The Telecommunication

Network Of University Of Freiburg�

Re�k Hadºiali¢

Triatmoko

November 9, 2011

Albert-Ludwigs-Universität Freiburg

Lehrstuhl für Komunikationsysteme

Prof. Dr. Gerhard Schneider

Supervisors:

Konrad Meier

Dennis Wehrle

Sommersemester 2011

Software for self-testing of the Telecommunication network of University of Freiburg

Contents

1 Introduction and Motivation 4

2 Requirements 5

2.1 Logical and algorithmic requirements . 5
2.2 Software requirements . 6
2.3 Hardware requirements . 8

3 Database design 9

4 Software design 12

4.1 Database access . 15
4.2 Controlling the cell phones . 15
4.3 Client and Server class . 16
4.4 Ping class . 17
4.5 Data logging . 18
4.6 SSH Tunnel Class . 18
4.7 USB Cell phone detection class . 19
4.8 Truth table class . 19
4.9 Init Test class . 19
4.10 Controller class . 20

5 Hardware design 21

5.1 BeagleBoard . 21
5.2 Cell phones . 21
5.3 Cables for the cell phones . 22
5.4 Server . 22

6 Communication protocol 23

6.1 Communication between the handler and controller 23
6.2 Veri�cation of the protocol . 26

7 Security and safety of the system 28

7.1 Encryption of the communication channels 28
7.2 Security on the web site . 29

7.2.1 Con�guring the http secure protocol https 29
7.2.2 Password protecting the web site using .htaccess 32

8 Web page 34

8.1 Communication between the web page and the test software 34
8.2 Results on the web page . 34

9 Employing the test software system 36

9.1 Required software and libraries . 36
9.1.1 Python installation . 36
9.1.2 Apache Web server installation . 36

2

Software for self-testing of the Telecommunication network of University of Freiburg

9.1.3 SSH . 36
9.1.4 MySQL database and MySQLdb library 37
9.1.5 Serial port library . 37
9.1.6 PJSUA library . 37
9.1.7 pChart library . 38
9.1.8 proctitle library . 38

9.2 Con�guring hardware . 38
9.2.1 Con�guring the cell phones . 40

9.3 Location of the �les . 41
9.4 Setting up the parameters . 42
9.5 Test descriptions . 42

9.5.1 Smart test . 42
9.5.2 SIP test . 43
9.5.3 GSM test . 43
9.5.4 All test . 43
9.5.5 Manual test . 43

9.6 Result descriptions . 44
9.7 Using the software . 45

9.7.1 Web site guide . 45
9.7.2 Terminal guide . 47

10 Conclusion 49

3

Software for self-testing of the Telecommunication network of University of Freiburg

1 Introduction and Motivation

In the following report, the authors will try to give you a brief insight into our team
project. The goal of our project was to develop a mechanism for automatic testing of our
University Telecommunication network. The Telecommunication network of University
of Freiburg consists of: our own internal GSM and telephone network systems; GSM
redirecting device (if one initiates a call to one of the four external GSM networks, it
redirects the calls to: T-mobile, 02, Vodaphone or E-Plus); a SIP gateway for land-line
calls inside of Germany (sipgate.de) and international calls. Since we did not have access
to internal servers, our strategy was to exploit the existing systems from an external
perspective and infer the results out of our �ndings. Before we had started working
on our project, we had to analyze the overall network to come up with the test cases
that contain the highest information content. The next step in our procedure was to
implement our ideas into a working piece of software. Gradually we implemented a bit-
by-bit of the �nal software. In the following chapters we will describe in more detail
our approach to the problem and how each subsystem works. This particular report
and our wiki page should be a su�cient guide and manual for understanding, running
and continuing the development of our test software. Certainly, we had a lot of fun
while working on the project due the fact that we lost one team member. We would like
to thank the whole department for the free co�ee and their support, especially Konrad
Meier, Dennis Wehrle, Richard M. Zahoransky and Larissa Linz, without their support
this project would not end up this way.

4

Software for self-testing of the Telecommunication network of University of Freiburg

2 Requirements

At the start of the project the requirements were not completely known but as the time
had passed we rede�ned our requirements and goals. The �rst and the most important
part at the start was to identify the key goals of our team project. The basic goal of our
team project was to build a test software system which could tell an operator user what
part of the system is not properly working in our University telecommunication network.
Konrad and Dennis suggested us to analyze �gure 1 and depending on it to build our
test software. Our �rst attempt was to see what could we test without having access to

Figure 1: Overview of the Freiburg University telecommunication network [1]

the system. We installed numerous communication programs to see what others have
done. After gaining access to the communication software, we had decided to build most
of the test software ourselves. Libraries, which were used, were only the ones we could
not develop ourselves because of the time-span of our team project.

2.1 Logical and algorithmic requirements

Despite the software and hardware requirements, the logic in our team project may be
considered as the most important part. Controlling the software and hardware in a
speci�c manner was one of the requirements in our team project. Moreover, we were
required to draw a use case diagram and a simple test case diagram so that we could

5

Software for self-testing of the Telecommunication network of University of Freiburg

better understand all the problems we had to deal with but also to easier follow the
development of our test software.

Figure 2: Simple algorithmic overview of a test case

2.2 Software requirements

Afterwards, as we had de�ned our logical approach to the problems, we had to choose
the programming language to realize our ideas. Since we had the freedom of choice,
between the three suggested programming languages Java, C++ and Python, we made
a joint decision to use Python as the main programming language in our team project.
One of the requirements was to �nish the team project in time, therefore our decision to
use Python is justi�ed. Using Python we could work faster and integrate our subsystems
more e�ectively [2]. Our programming language of choice is multi-platform, therefore
our test software would be easy portable to other operating systems.

Likewise we had to decide how our test software will work. One of the requirements by
Dennis and Konrad was to make the software capable of being run from the terminal. The

6

Software for self-testing of the Telecommunication network of University of Freiburg

next requirement was to make an appealing GUI so that even an user without advanced
Linux experience could handle the software and read out the results.

In addition it was required to log all the past tests. Later on a machine learning
algorithm or some other intelligence could be applied to deduce some error behavior of
the system (e.g. an intelligent algorithm could �nd that part of the system fail in a
combined manner). To accomplish the logging of all the tests we had to use a database
system. We decided to use MySQL since it is open source and well supported.

Figure 3: Test case diagram

7

Software for self-testing of the Telecommunication network of University of Freiburg

2.3 Hardware requirements

Likewise the software requirements, we had hardware requirements as well. We were
required to identify the hardware we will need to perform the tests. It was important
to �nd old and cheap cell phones that could support AT Modem commands because our
budget was limited.

A problem we had to deal with at the start was that the base stations are located
at di�erent geographical points which were not near to each other. No one should go
everyday to the rooms where our cell phones are located only to change or charge the
batteries. In the cable subsection we describe our approach to the charging battery
problem. As we de�ned our requirements we continued with the process of developing
the test software. During the development time we re�ned our requirements. In the next
chapters we will explain our database, software and hardware design ideas.

8

Software for self-testing of the Telecommunication network of University of Freiburg

3 Database design

As we mentioned in the software requirements section, we decided to use MySQL as our
database system for storing the test information and results. It was not di�cult to decide
what database to use, since MySQL is one of the most supported database and one can
�nd a library to use it with major programming languages. The key point in the design
of our database was the simplicity and speed of accessing the data. We had decided to
use seven tables. In the following paragraphs we will explain each table separately and
its usage. The database design can be seen in �gure 4.

The PingResultTable table has six attributes (taskNo, sipServer, sipGate, unisip, gsm-
Box1, gsmBox2), all of integer type. The taskNo attribute identi�es the test number but
not a single test (e.g. an operator user has selected three di�erent tests to be executed,
all of the three tests will have the same taskNo to identify them together as belong-
ing to one test group and taskId identi�es each single test and will be explained later).
sipServer represents the Asterisk server ping result. sipGate is used to represent the SIP
Gate server for the landline calls (http://www.sipgate.de). uniSip represents the ping
results for our local University telephone network SIP server. gsmBox1 and gsmBox2
are the two single-chip Linux computers (BeagleBoard), that control two cell phones
each one (i.e. they are also known under the name of nanoBTSx controller). taskNo is
the primary and unique key in the table PingResultTable. Rest of the attributes (i.e.
sipServer, sipGate, uniSip, gsmBox1, gsmBox2) are used to insert the ping results, if the
assigned servers are reachable or not. Before any test attempt is made, our test software
�rst tries to ping the servers. These results are then stored in the PingResultTable.

The ErrorCodeTable table de�nes all the possible test results in the system, in other
words it represents a list with error codes with their appropriate descriptions and mean-
ings. It consists of two attributes (errorcode and description), the �rst is of integer type
and the second of varchar type (the description message is allowed to be only 100 charac-
ters long). The ErrorCodeTable table is used by the main test software (i.e. controller)
to report the operator user what kind of error had appeared in the system.

The DeviceAddressTable is the table containing the location and identi�cation data for
each server and device. The table consists of seven attributes, deviceName, portName,
number, lastChange, username, password, server. deviceName is the attribute with the
name of the device or server (e.g. GSMRZ1 or landline), it is of varchar type. portName
is the attribute �eld with the location address for a cell phone (e.g. /dev/ttyUSB1) or
'localhost' instead of NULL value for a server, it is of the varchar type. number represents
the number of the used service (i.e. number of the cell phone, SIP, etc.) and is of varchar
type. lastChange is a time value and represents the date and time the given entry was
modi�ed (we had plans in future versions of our test software that if an device gets a
new IP address assigned it automatically changes it in the database). username is the
�eld with the username stored in for a server/service, like SIP and landline. password
attribute stores the password information for the given service. The server attribute
stores information about the location of the server, IP or DNS address of the server.
All three �elds, username, password and server are of varchar type. The information
stored in the given table is used by the test software to obtain usernames, passwords and
addresses of the used services for the tests.

9

http://www.sipgate.de

Software for self-testing of the Telecommunication network of University of Freiburg

The ResultTable table is used by the test system to store �nal results for the performed
tests. Our given table consists of two �elds, taskID and result and both are of integer
type. For each test entry with unique taskID an error code is assigned in the result �eld,
depending on the test results. Error codes found in the ErrorCodeTable table can be
only assigned to this �eld.

The TempTaskTable table represents the table with the tasks the system has to exe-
cute next time the test software is started. The given table gets new data every time an
operator user submits one or more test cases from the website to be executed. TempTask-
Table includes four attributes, taskID, taskNo, from, to. Former two are of integer type
and later two of varchar type. taskID and taskNo identify the test task to be executed,
taskID is the unique primary key. from and to �elds have to match the names given
in DeviceAddressTable.deviceName, these two attributes specify the caller and callee de-
vices/services. Consequently, after the tasks get executed, the test tasks are removed and
the given table is empty again until next tests are added to it. However, all the test tasks
even after deleting them from TempTaskTable are kept in the TaskTable. The reason why
the authors of this project divided it into two tables was because of the database row
selection speed. We had made the assumption that with time the database size will grow
and therefore the database speed will not be the same as during the development period.

The TaskTable table, as mentioned before contains all the tests ever performed from
the web site. It is made out of �ve attributes, taskID, taskNo, from, to, timestamp. The
�rst four �elds are the same as in TempTaskTable, however the last one, timestamp, is
used to record the exact time when the test was performed.

TheGSMListPre�x table contains the data about the GSM networks and their pre�xes.
It consists of two attributes, both of varchar type, providerName and pre�x.

10

Software for self-testing of the Telecommunication network of University of Freiburg

F
ig
u
re

4:
D
at
ab
as
e
re
la
ti
on
sh
ip

d
ia
gr
am

11

Software for self-testing of the Telecommunication network of University of Freiburg

4 Software design

Software design was the next step after we analyzed the problem and developed a plan
how to proceed further. Good analysis and planning with poor algorithmic implemen-
tation is valueless. During the work on the project, we had spent most of our time for
software design. We kept in mind that our software should satisfy major paradigms
of software engineering, like compatibility, extensibility, modularity, reliability, security,
fault-tolerance and usability. The software engineering design concepts were achieved
following way:

• Compatibility - we used Python and MySQL which are multi-platform and work
on major OS

• Extensibility - new parts of code can be easily added by just modifying the classes

• Mudalarity - the components are independent black boxes, they are tested and
validated independently

• Reliability - we use mutex locks to perform tests and database transaction opera-
tions to insert data into the database

• Security - all communication channels, as well as the access to the web site, are
encrypted with asymmetric key cryptography

• Fault-tolerance - the classes were designed to continue operating even if error events
appear and handlers are logging all events

• Usability - we tried to create a simple user interface and easily to use for everyone

Figure 5: Working principle of the test software

12

Software for self-testing of the Telecommunication network of University of Freiburg

The basic principle how the test software works can be seen in �gure 5. The test
software is started either manually from the terminal or using the web site. When the
test software is started manually it is database dependent as well and therefore could
not be used if the database is being maintained or not working. If it is started from
the web site it connects to the database to get its tasks which have to be performed.
After receiving the tasks it makes a simple network test by pinging all the servers. The
ping results are stored in the database (in case the test was started from the web site).
Then it proceeds with the tests by connecting itself to the handlers and sending them
commands to perform the tests1. At the higher level, these commands can be seen as
requests for being the callee and caller. Meanwhile the handlers send their test results
to the main test software which in return decides if the test result was successful or not.
The result is written to the database (in case the software was started from the website),
otherwise the results are displayed in the terminal window and the user who started it
manually can see the test results. We will proceed with introducing the classes. The
software class diagram can be seen in the following �gure. More details for the classes,
like the input/output can be found on our project's wiki page [4].

1Before it connects to the handlers, it uses the ping results to see is the service/device physically
connected to the network.

13

Software for self-testing of the Telecommunication network of University of Freiburg

F
ig
u
re

6:
C
la
ss

d
ia
gr
am

(s
om

e
cl
as
se
s
w
er
e
ex
cl
u
d
ed
)

14

Software for self-testing of the Telecommunication network of University of Freiburg

4.1 Database access

Accessing the database is of critical value to our project, therefore we had developed our
own class that limits the access to the database. In the process of developing our own
class we used the MySQLdb library in Python [3]. The database class has two working
modes, a normal working mode and a debugging mode. The di�erence between these two
modes is in the output information. In case the error handling function raises an error and
it is unknown, if the debug mode is set a complete back-trace of the error will be printed
out. A developer can change the mode by setting the variable debugMode=1. The class
diagram can be seen in the following �gure. The method names are self-explanatory and

Figure 7: Class diagram for the dbClass

do not require extra explanations. All the outputs produced by the class can be found
on the project wiki page [4].

4.2 Controlling the cell phones

Our �rst version of the developed program code for controlling the cell phones used
prede�ned timed values to send commands instead of using a state controlled approach
to con�rm that every command was successfully received and executed by the cell phone.
It meant we had to make an enormous number of assumptions. In comparison to our
second approach, to build a state controlled cell phone control class, our �rst approach
was inferior and slower. The state controlled method connected two cell phones, on the

15

Software for self-testing of the Telecommunication network of University of Freiburg

Figure 8: GSM class diagram for controlling the cell phones

same base station, up to 15 times faster than the timed approach. One can easily apply
the class just by correctly de�ning the parameters: port address, baud rate and timeout.
The former two are self-explanatory and the timeout parameter is used to de�ne when
the alarm function should raise a timeout exception. A timeout exception gets raised
when the cell phone does not respond (i.e. when the cell phone enters a deadlock or
delayed state). We had used the serial port library inside of Python although we use
USB cables to connect to our cell phones. One should be aware that our USB cables
create a virtual serial port. More details on class design and an example can be found
on our project wiki [4].

4.3 Client and Server class

Our socket communication code is based on the example given in the Python socket
manual [5]. We extended it into two classes, a client and a server class. We had used
the TCP protocol to base our two classes on2. The Server class can be seen in the
following �gure. The server class is implemented to accept only local connections3. First
we determine our IP address and then create the socket to listen only for the same IP
address (with a di�erent IP address than the selected one a connection cannot be even
established). One has to de�ne the port on which the server object should listen. When
receiving data one can easily de�ne the timeout to be raised if data are not received in
the timeout range or set it to 0 to in�nitely wait for the bu�er to be �lled with received
data. While testing the server class we had the problem to listen on the same port if the
application was forcibly4 restarted in less than 60 seconds. We got the error message:
"Address already in use". This is not known as error behavior but rather an option to
help the server to catch lost live packets (i.e. packets that are still in the network looking
for it is goal destination). We solved the problem by changing the socket options with the

2TCP is reliable compared to UDP (i.e. transmitted packets get also delivered), packets are ordered
when received and data are received in a stream (i.e. multiple packets can be read at once).

3More details are given in the section 7.1
4Manually closed using CTRL+C and run again.

16

Software for self-testing of the Telecommunication network of University of Freiburg

SO_REUSEADDR parameter. This enabled us to get around the error when we tried
to restart our server application. Before solving the problem without using the socket
parameter, we had another solution to get around this problem by killing the application
running the port, this old method is obsolete now. In the process of testing the client

Figure 9: Server class, used by the server application

class we did not have any major problems. The only major �ow we had to debug was
when one of the sides disconnects that we get out of the waiting loop if the timeout
variable was set to 0 (i.e. in�nite waiting loop). The client class can be seen in the
following �gure. To initialize the client object one needs to de�ne the IP address and
the port of the server application listening on it. Once an instance of it is created and

Figure 10: Client class, used by the client application

loaded with the IP address and the port, one needs to call the connect() method. The
method will produce an integer based on its connection state. Output information and
the programming code can be found on our project wiki page [4].

4.4 Ping class

Before making any test and establishing a connection we were required to ensure that
the server is online. The best way to assess the liveness property was to ping the server
computer running the required service. Once the class is properly de�ned, we could easily

17

Software for self-testing of the Telecommunication network of University of Freiburg

set the number of ping tries. A ping timeout response was set up to 2 seconds. For more
details and insights, one can read more about it on our wiki page [4].

Figure 11: Ping class, used by test software

4.5 Data logging

If errors appear it is important to reconstruct the events that led to the misbehavior of
the software. One of the best ways to reconstruct the events was to log events for di�erent
blocks of programming code. We had used the logging class to follow our handler code
run on the BeagleBoard. In case there is an error we could look inside of the log �les
and track the error. How the class works and what kind of outputs it produces can be
found on our project wiki page [4].

Figure 12: Logging class

4.6 SSH Tunnel Class

Since security played an important role in our team project. We decided to encrypt all
of our data that was not processed on our server computer. The simplest solution to
this problem was to build an SSH Class that could open and close a local forwarding
port. All data sent through the created port is encrypted until it gets to its destination
location.

Figure 13: SSH Tunnel class

18

Software for self-testing of the Telecommunication network of University of Freiburg

4.7 USB Cell phone detection class

Since we had used cables to connect the cell phones with the computer, usually the
devices got their own port addresses. They were automatically assigned by the operating
system, either after the cables were plugged into the USB port or after a system reboot.
One of the problems we had to deal with was assigning the right cell phone (i.e. with
the appropriate GSM network) to the corresponding port address. The operating system

Figure 14: USB cable detection class

randomly assigned the port names after every reboot. We were looking for a solution to
prevent this misaddressing of the devices. Our solution was to recognize every device and
update the port address in the database. The principle how we identify the cell phones
is by their calling numbers in the database. More details can be found on our project
wiki page [4].

4.8 Truth table class

The truth table class was built to identify the broken and working parts of the system.
It requires the list with test results to be present to be operable. Then the class tries to

Figure 15: Truth table class

identify the broken parts of our telecommunication network. The class can easily identify
how many nanoBTSs are installed in the network and derive a decision which part of
the network is broken. All the test results are stored in a list and can be easily read
by calling the initTrueTable(x) function. More details can be found on our project wiki
page [4].

4.9 Init Test class

The main purpose of the class is to get device data from the database and to process it.
The processed data get forwarded to the controller class and in the end the class fetches
the results from the test. This class contains the smart test functionality. It selects
automatically the important tests to perform. In the next step it tries to identify the
problem in the network. More details can be found in the smart test description.

19

Software for self-testing of the Telecommunication network of University of Freiburg

Figure 16: Init test class

4.10 Controller class

The controller class is used to assign jobs to handlers (in other words, which one is
going to be the caller and callee). Simultaneously, it de�nes the port addresses for
the communication between the handlers and the main test software (controller). If

Figure 17: Controller class

the callee or the caller are nanoBTS controller boxes (i.e. BeagleBoards outside the
Rechenzentrum), it will �rst create an SSH connection to make a tunnel before the
local socket connection is created. Then the controller class sends all the required data
regarding the test tasks to the handlers.

20

Software for self-testing of the Telecommunication network of University of Freiburg

5 Hardware design

In our team project we had the option to choose all the required hardware ourself beside
the two BeagleBoards, which we were supplied by Konrad and Dennis. Since one of the
project goals was to reduce the costs as much as it was possible, we had tried to use some
of the leftovers found in our lab.

5.1 BeagleBoard

�The BeagleBoard is an OMAP3530 platform designed speci�cally to address the Open
Source Community. It has been equipped with a minimum set of features to allow the

Figure 18: BeagleBoard, a Linux-on-chip board where our controller software runs the
GSM device

user to experience the power of the OMAP3530 and is not intended as a full development
platform as many of the features and interfaces supplied by the OMAP3530 are not
accessible from the BeagleBoard� [11]. We run on it a special precompiled version of
Ubuntu for the ARM processor type. The Linux system boots up from an SD Card. The
board has an USB hub and network port attached to it. In our project it is connected
to our internal university LAN network and to a cell phone. We positioned the two
BeagleBoards in rooms where we had LAN access and GSM signal coverage of our two
local base stations.

5.2 Cell phones

Our �rst attempt was to control a Nokia cell phone 3310 with the supplied USB con-
nection cable. The protocols used by old versions of Nokia cell phones, as the 3310, use
the F-Bus protocol. It was not easy to work with. After performing various experiments
we succeeded to send and to read SMS messages. Later on we found out that it was
not possible to send commands for receiving and making the calls. In the meantime we
found two Siemens phones, one M45 and S55. The �rst one, Siemens M45, had a cable
supplied with it and it was not di�cult to control it with the standard set of AT modem

21

Software for self-testing of the Telecommunication network of University of Freiburg

commands. At the start we did not have a cable supplied for the Siemens S55 phone.
We controlled it over the Bluetooth port.

5.3 Cables for the cell phones

Due to the fact that we had used 5 cell phones on a single computer, the best solution
was to order 5 USB cables. Konrad bought 5 cables for 5 Siemens S55 cell phones. All
of the cables have an USB2Serial chip converter inside of them. Once they were plugged
into the USB port, Ubuntu automatically recognized the cables and installed the drivers.
The virtual serial ports were created and could be found on /dev/ttyUSBx, where x is
the automatically assigned number for the port. Some of the cables had the capability to
charge the Siemens S55 phones. Konrad had opened several cables to solder the power
supplies to some contacts and the problem was solved for all of the cables.

5.4 Server

We were given an old Pentium 3 computer where we installed Ubuntu Linux. Con�gured
the Apache web server and MySQL. Afterwards we installed the Python on it and all
the required libraries5.

5Required libraries are mentioned in section 9.1.

22

Software for self-testing of the Telecommunication network of University of Freiburg

6 Communication protocol

A communication protocol represents a set of well de�ned rules by whose help two or
more computing systems exchange information in-between. When de�ning these rules, it
is important to de�ne a limited state space for every possible event, no matter did we get
the appropriate response from the other side. Our approach to this problem was to build
a simple synchronous protocol, where every expected message is con�rmed or otherwise
the connection between two sides is immediately terminated. Since designing protocols
is a demanding and challenging topic which requires years of experience and veri�cation,
we do not expect that we had developed the best possible and an optimum protocol6. In
the following paragraphs we will try to clarify how our protocol works. Before we start to
go into detail how the protocol works, it is important to remember that we di�erentiate
two sides, handler and the controller side. The handler side represent the device that
physically handles the call (e.g. the BeagleBoard) whereas the controller (i.e. the main
test software), is the test software controlling the handler side and assigning the task to
it.

6.1 Communication between the handler and controller

The handler side is always in the waiting mode, by waiting we denote the mode where
the socket is already created and it is waiting for a connection to be accepted at the
de�ned port. The controller initiates a socket connection to the two handlers. Sub-
sequently, after the connection has been established, it is waiting for a message to be
received. The �rst message has to be 13 characters long and include the following con-
tent HELLO HANDLER. Thereupon, after the message has been validated, the handler
side sends the controller side a response, HELLO CONTROLLER. We call this �rst
message exchange the initialization. Now the controller side has to decide which of the
two handler's will be the caller/callee whereas the other handler will be the opposite.
Let's assume the controller sends to the �rst handler the message RECEIVER and to
the second one the message CALLER|#, replace the callee number with the # sign.
In the meantime, both handlers initialize the software required to make the call and to
receive the call. Asynchronously they respond back to the controller their successful ini-
tialization. The successful initialization is reported by sending RECEIVER READY and
CALLER READY. After receiving the mentioned messages, the controller �rst sends the
callee handler the message RECEIVE START and then to the caller handler, the mes-
sage CALLER START. As a result of these messages, the handlers enter the receiving,
respectively calling state. In the given states two timeout timers gets activated. These
timers are responsible for the case if the physical connection between the callee and
the caller are not successfully established or terminated7. Afterwards, depending if the
physical connection between the handlers (i.e. the callee and the caller) was successfully
established or not, the handlers report their corresponding state with a message to the
controller. The message is of the form CALL OK, meaning the handler successfully es-

6Design concepts and paradigms for the protocol design have been used from the �Network Protocol
Design and Evaluation� course, lectured by Dr. Stefan Rührup

7The client and server classes responsible for the communication have timeout timers as well for the
case if the connection between the controller and handlers are broken.

23

Software for self-testing of the Telecommunication network of University of Freiburg

tablished a physical connection with the other handler, or of the form CALL NOT OK,
meaning a physical connection was not successfully established on the given handler.
The controller considers only a test successful if both handlers report with CALL OK.
The test software ends the established connection with the handlers by sending them
the TERMINATE CONNECTION command. After the handlers have terminated the
connection, they enter the waiting for a new connection state and the process starts from
beginning again. If the states are not entered in the speci�ed order the connection is
immediately terminated and the state machine is in the waiting for a new connection
state8.

8It cannot be seen in the protocol �owchart but one should keep in mind it works like a well de�ned
state machine.

24

Software for self-testing of the Telecommunication network of University of Freiburg

F
ig
u
re

19
:
F
lo
w
ch
ar
t
of

th
e
p
ro
to
co
l
on

th
e
h
an
d
le
r
si
d
e
w
it
h
ou
t
th
e
st
at
e
re
p
re
se
n
ta
ti
on

25

Software for self-testing of the Telecommunication network of University of Freiburg

Figure 20: Flowchart of the protocol on the controller side for the caller without the state
representation

Figure 21: Flowchart of the protocol on the controller side for the receiver without the
state representation

6.2 Veri�cation of the protocol

�SPIN is a model checker - a software tool for verifying models of physical systems, in
particular, computerized systems. First, a model is written that describes the behavior
of the system; then, correctness properties that express requirements on the system's be-
havior are speci�ed; �nally, the model checker is run to check if the correctness properties
hold for the model, and, if not, to provide a counterexample: a computation that does
not satisfy a correctness property.� [6]. We modeled our simple protocol in SPIN using
the programming language PROMELA [6]. Since PROMELA is similar to C it was not
possible to ensure 100% matching with Python but we had made the assumptions of it.

26

Software for self-testing of the Telecommunication network of University of Freiburg

We modeled both sides, server and client side. As well as the server side being a caller
and a callee. It was important to �nd out if our protocol is deadlock or delayed state free.
For more details our model can be found on our wiki project page with the PROMELA
source code [4]. We had built in a 50% random probability that the call test will not
be successful, to make the model even more realistic. Our protocol idea was deadlock
free and the veri�cation results prove it. After we had modeled the basic idea we had
written the code that implements our idea. The Python code resembles some kind of a
state machine which remembers the last state and what the next state should be in case
of receiving corresponding message. Otherwise it enters the exit state and then the start
state.

(Spin Version 6.1.0 −− 2 May 2011)
+ Partial Order Reduction

Full statespace search for:
never claim − (none speci�ed)
assertion violations +
cycle checks − (disabled by −DSAFETY)
invalid end states +

State−vector 44 byte, depth reached 65, errors: 0
40 states, stored
3 states, matched
43 transitions (= stored+matched)
90 atomic steps

hash con�icts: 0 (resolved)
2.195 memory usage (Mbyte)

unreached in proctype Server1
(0 of 36 states)

unreached in proctype Server2
(0 of 36 states)

unreached in proctype Client
(0 of 67 states)

pan: elapsed time 0 seconds

27

Software for self-testing of the Telecommunication network of University of Freiburg

7 Security and safety of the system

Safety and security of the software plays a major role in our project. It is of vital
importance that only as few as possible people have access to our test system since the
resulting data could be exploited to plan an attack (e.g. assume the University alarm
system uses the SIP gateway to connect to the outside world and to alarm the police,
if one knows that the SIP gateway is not working properly, a burglar could plan to rob
the University building just at that moment). Therefore the choice to go Open Source
is justi�ed due to the fact that one should know how every single detail of the system
works. All the time, while we were working on the project, we were made aware of this
issue by Dennis and Konrad. We decided to use asymmetric key cryptography, where
each side has two keys (private and public). In the next sections we will explain in more
details how we applied the methods.

7.1 Encryption of the communication channels

At �rst we thought to encrypt the data before sending them but since none of us was an
expert on encryption standards the idea was rejected. Alongside the fact that none of
us had been an expert in the �eld of cryptography, we were neither experts in the �eld
of Internet programming. One could �nd maybe a way to disable our server software
with various hacking methods (e.g. trying to open the port until the system runs out of
memory and in our case the system which we used on the handler side was a BeagleBoard
with ARM architecture running on a single chip TI OMAP processor, refer to the picture
in �gure). We had to eliminate even the slightest possible threat in return for spending
more time for debugging the test software system. Despite we were aware of all these
facts, we had to choose one of the plenty implemented encryption standards on Linux.
Dennis and Konrad suggested using the SSH Tunneling method.

Figure 22: SSH Tunnel, all the communication inside the tunnel is encrypted

Using the SSH Tunnel port forwarding method we could hide the real port we had
used for our socket connection. On the other hand we could force the socket to accept
only local connections (i.e. from the machine where the handler software was running).
The SSH Tunnel port forwarding method creates an encrypted tunnel between the two
computers and then it creates two ports, one on the local and remote computer. All
the data sent through the port on the local machine appear on the port at the remote
machine.
The �rst problem we faced was that SSH required the username and password every time
we tried to make an SSH connection. We could avoid this problem by copying the public
key from our server (where our test software runs) to the BeagleBoard [7]. This can be

28

Software for self-testing of the Telecommunication network of University of Freiburg

performed by executing the following commands in the terminal shell. One has to create
�rst the private and public keys on the local machine(i.e. server computer, where the
test software runs):

re�k@ubuntu:$ [Note: You are on local−host here]

re�k@ubuntu:$ ssh−keygen
Generating public/private rsa key pair.
Enter �le in which to save the key (/home/re�k/.ssh/id_rsa):[Enter key]
Enter passphrase (empty for no passphrase): [Press enter key]
Enter same passphrase again: [Press enter key]
Your identi�cation has been saved in /home/re�k/.ssh/id_rsa.
Your public key has been saved in /home/re�k/.ssh/id_rsa.pub.
The key �ngerprint is:
33:b3:fe:af:95:95:18:11:31:d5:de:96:2f:f2:35:f9 re�k@ubuntu

Then one needs to copy the public key to the remote machine (BeagleBoard) using
ssh-copy-id:

re�k@ubuntu:$ ssh−copy−id −i ~/.ssh/id_rsa.pub remote−host
re�k@remote−host's password:
Now try logging into the machine, with "ssh 'remote−host'", and check in:

.ssh/authorized_keys

to make sure we haven't added extra keys that you weren't expecting.

After we have created the public and private keys, and coppied the public key on the
machine to which we want to connect, we can test if we can make an SSH connection to
the remote machine:

re�k@ubuntu:$ ssh remote−host
[Note: SSH did not ask for password.]

re�k@remote−host:$ [Note: You are on remote−host here]

The test was successful. We tested it with our SSH Tunnel port forwarding class and it
worked perfectly.

7.2 Security on the web site

Aside from having secured the data communication channels between various parts of our
software (the handlers and the controller), it was crucial to ensure all the communication
between test user's browser and our server. Therefore we had used the https protocol
and the .htaccess �le to password protect the web site so only the privileged users have
access to our test system.

7.2.1 Con�guring the http secure protocol https

Securing the communication channels without making certain the web site is safe would
be worthless. We decided to use the https protocol instead of the http since a person in
the middle could sni� our data (e.g. a person is connected with his/her smart-phone over
an unprotected wireless network) [8]. At the same time the web site should be accessible

29

Software for self-testing of the Telecommunication network of University of Freiburg

only by the authorized personel. Our �rst approach to this problem was to build an PHP
page withMD5 hashed passwords, however we got a suggestion by Konrad and Dennis to
use a safer encryption method implemented in the Apache web server software, .htaccess.
By using these two techniques we protected the web site of some vulnerabilities known
to us. If the web site will be only accessed from our local university network, we can
additionally add an IP �lter mask as well. In the following paragraph we will explain
our procedure how to generate the keys and to enable the https protocol.

First we want to generate a server key by typing the following command:

openssl genrsa −des3 −out server.key 4096

This will generate a 4096 bit long private server key, one is asked to enter two times
a password for the server.key. Using the generated private server key, we will create a
certi�cate signing request, server.csr. We were prompted with a series of questions like
country, state, organization name and etc which we had to enter to resume.

openssl req −new −key server.key −out server.csr

In the next step we had to sign the certi�cate signing request and enter the amount
of days for how long it should be valid. In our case we entered the duration of one year,
one can make it for longer periods as well (i.e. the amount of 365 has to be changed).

openssl x509 −req −days 365 −in server.csr −signkey server.key −out server.crt

We were asked to enter the password again for server.key. After we have completed
this step we had to make a version of the server.key which did not require a password,
server.key.insecure and we will rename the �les appropriately.

openssl rsa −in server.key −out server.key.insecure
mv server.key server.key.secure
mv server.key.insecure server.key

The generated �les are very sensitive, since they are our keys. After these steps were
completed, we had generated 4 �les: server.crt, server.csr, server.key and
server.key.secure. Now we need to enable the SSL engine on the Apache web server. We
coppied server.key and server.crt into /etc/appache2/ssl.

re�k@ubuntu:/etc/apache2$ sudo mkdir ssl
cp server.key /etc/apache2/ssl
cp server.crt /etc/apache2/ssl

Then we enabled SSL by typing in a2enmod ssl, �it is simply a general purpose utility
to establish a symlink between a module in /etc/apache2/mods-available to
/etc/apache2/mods-enabled (or give a message to the e�ect that a given module does not
exist or that it is already symlink-ed for loading)� [8].

re�k@ubuntu:/etc/apache2/ssl$ sudo a2enmod ssl
Enabling module ssl.
See /usr/share/doc/apache2.2−common/README.Debian.gz on how to con�gure SSL and create self

−signed certi�cates.
Run '/etc/init.d/apache2 restart' to activate new con�guration!

30

Software for self-testing of the Telecommunication network of University of Freiburg

In the next procedure we had to establish a symlink from the 'available' default-ssl �le
to the 'enabled' �le [8]. Then we created a folder where our secured PHP �les will be
located (e.g. https://some-domain-name.com/test-software).

re�k@ubuntu:/etc/apache2/ssl$ sudo ln −s /etc/apache2/sites−available/default−ssl /etc/apache2/
sites−enabled/000−default−ssl

re�k@ubuntu:/etc/apache2/ssl$ cd /var/
re�k@ubuntu:/var$ sudo mkdir www−ssl

We had backed up our old con�guration �les for the virtual hosts, for the case if we
damage the Apache con�guration �les. Then we edited the default-ssl �le.

re�k@ubuntu:/var$ cd /etc/apache2/sites−available
re�k@ubuntu:/etc/apache2/sites−available$ sudo cp default default_original
re�k@ubuntu:/etc/apache2/sites−available$ sudo cp default−ssl default−ssl_original
re�k@ubuntu:/etc/apache2/sites−available$ sudo vim default−ssl

Only the beginning of the �le is listed here and we have modi�ed the line starting with
DocumentRoot and <Directory /var/www/> from DocumentRoot /var/www to Docu-
mentRoot /var/www-ssl and from <Directory /var/www/> to <Directory /var/www-
ssl/> (i.e. we had to rede�ne the location of our SSL directory).

<IfModule mod_ssl.c>
<VirtualHost _default_:443>

ServerAdmin webmaster@localhost

DocumentRoot /var/www−ssl
<Directory />

Options FollowSymLinks
AllowOverride None

</Directory>
<Directory /var/www−ssl/>

Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
allow from all

</Directory>

One should keep in mind that the port 443 should be free for Apache to use it. In
the proceeding step we had to ensure that Apache listens on the given port for a https
connection. One could test that by going into the /etc/apache2/ports.conf.

<IfModule mod_ssl.c>
If you add NameVirtualHost ∗:443 here, you will also have to change
the VirtualHost statement in /etc/apache2/sites−available/default−ssl
to <VirtualHost ∗:443>
Server Name Indication for SSL named virtual hosts is currently not
supported by MSIE on Windows XP.
Listen 443

</IfModule>

In our case it was set up correctly, since the command: Listen 443 was present. In
our last con�guration step we had to edit default-ssl �le to de�ne the correct locations
of our keys and to ensure the SSL engine was turned on.

re�k@ubuntu:/etc/apache2/sites−available$ sudo vim default−ssl

31

Software for self-testing of the Telecommunication network of University of Freiburg

The following part of the �le had to be found and modi�ed according to our locations:

SSLEngine on

A self−signed (snakeoil) certi�cate can be created by installing
the ssl−cert package. See
/usr/share/doc/apache2.2−common/README.Debian.gz for more info.
If both key and certi�cate are stored in the same �le, only the
SSLCerti�cateFile directive is needed.
SSLCerti�cateFile /etc/apache2/ssl/server.crt
SSLCerti�cateKeyFile /etc/apache2/ssl/server.key

Server Certi�cate Chain:
Point SSLCerti�cateChainFile at a �le containing the

Finally we had con�gured our server and can proceed with the restart of the apache web
server. We created a test web site /var/www-ssl/index.php and navigated our browser
to https://localhost. The test was successful!

re�k@ubuntu:/etc/apache2/sites−available$ sudo /etc/init.d/apache2 restart
∗ Restarting web server apache2 [Sat Oct 08 21:52:51 2011] [warn] _default_ VirtualHost overlap on

port 443, the �rst has precedence
... waiting [Sat Oct 08 21:52:52 2011] [warn] _default_ VirtualHost overlap on port 443, the �rst has

precedence [OK]
re�k@ubuntu:/etc/apache2/sites−available$

7.2.2 Password protecting the web site using .htaccess

Aside from using a secure communication protocol on the web, https, it is important
to ensure that only permissioned users gain access to the web site. We had achieved it
using the .htaccess �le. However, to enable the use of Apache .htaccess �les, we will have
to recon�gure the Apache con�guration �les again. root access will be required. First
we have to edit the /etc/apache2/sites-available/default-ssl �le. Find the following lines
and modify the AllowOverride None to AllowOverride All like in the given con�guration
segment:

<Directory /var/www−ssl/>
Options Indexes FollowSymLinks MultiViews
AllowOverride All
Order allow,deny
allow from all

</Directory>

This will tell Apache web server that it is okay to allow .htaccess �les to over-ride previous
directives. We must reload the Apache web server before the changes can take e�ect. We
can do it by typing:

sudo /etc/init.d/apache2 reload

The next step is to go to the directory where our test software web page is located (e.g.
/var/www-ssl/testsoftware) and to create a �le called .htaccess. Please insert the following
code segment inside the created .htaccess �le where /var/www-ssl/testsoftware/.htpasswd
is your full path address to .htpasswd :

32

Software for self-testing of the Telecommunication network of University of Freiburg

AuthUserFile /var/www−ssl/testsoftware/.htpasswd
AuthName "Authorization Required"
AuthType Basic
require valid−user

Then in the next step, create another �le called .htpasswd. After you have created it, we
will add the usernames that should have access to the web site. We do that by typing
the following command, where you can replace konrad with any other combination of
letters which will represent your username:

re�k@ubuntu:/var/www−ssl/testsoftware$ sudo htpasswd −c .htpasswd konrad

Afterwards, you will be required to type twice the same password for the username you
want to create, in this case konrad. �The -c �ag is used only when you are creating a
new �le. After the �rst time, you will omit the -c �ag, when you are adding new users
to an already-existing password �le. Otherwise you will overwrite the �le!� [9]. You can
add as many users as you wish, do not forget to remove the -c �ag when you do it. In
the last step, we have to modify the /etc/apache2/apache2.conf �le and to add at the
end of it the following code segment where /vaw/www-ssl/testsoftware is the full path to
your web page directory where you put the .htpasswd �le:

<Directory /vaw/www−ssl/testsoftware>
AllowOverride All
</Directory>

We are done with editing. All we have to do now is to restart the Apache web server.
We can do that by typing:

sudo /etc/init.d/apache2 restart

You can test it now by opening a new browser tab and navigating to https://localhost/
testsoftware (keep in mind to replace testsoftware with your name of the folder where
the web page is located). If you con�gured everything properly, you should get a dialog
where you can enter your created username and password and try to login.

33

Software for self-testing of the Telecommunication network of University of Freiburg

8 Web page

One of the requests of our team project was to build a test system that could be started
from the web site. Since we used the Open Source platform to base our project on, it
was certain we will use it for the web site as well. The dynamic parts of the web site
were programmed using PHP and JavaScript. The GUI was done using CSS. The web
site opens TCP/IP sessions between itself and the Python test software. Due reasons
explained in the section above, a test user needs �rst to enter his username and password
to access the web site. Then a test user can manually select what type of tests he wants to
perform or he can select already de�ned test, like the simple, smart or full test. (Describe
here these three type of tests). Data about the performing tests are inserted into the
database only in the case if the mutex lock for the web site can be obtained9. This way
we can avoid inserting data about the test in case there is already a test user on the
website performing some tests on the system.

8.1 Communication between the web page and the test software

Our �rst idea was that the PHP �le starts the test software. However, parts of our test
software open new terminal windows and since PHP has restrictions for starting GUI
applications our approach was condemned for a failure at the start. We had to deal with
this problem and our solution to it was to write a little Python script that will run in
background and start our test software when required. Once a person starts the test
over the web site, it automatically connects to the Python script over an TCP/IP socket.
Before being able to start the test software one needs �rst to obtain the mutex lock on
the web site and to check if there is a mutex lock for the test software running. Using
this approach we can ensure that only one user at the time can be on the web site and
run only one instance of the test software. In the next step we send the Python script
a message to start the test software. The test software obtains a mutex lock as well.
When the test software is started the web page checks if a software lock is obtained.
Once it is obtained we can proceed with creating a new socket connection between the
web site and the test software. Our TCP/IP communication between the web site and
the test software is not encrypted since both the web page and the test software run on
the same server computer. The mutex locks are freed after the tests are performed. Our
test software has a timeout timer in case that the web site hangs or somehow the socket
connection breaks where it automatically shuts down.

8.2 Results on the web page

All the performed test results are displayed on the web site. The results are displayed
in real time after each selected test case is performed. After all the test cases have been
performed a topological picture is generated which represents the current state of the
system, this can bee seen in the following �gure. Afterwards, when the result picture
is generated, the test user can easily see what is wrong in the system. Various icons
represent di�erent subsystems. Reading the test results is as simple as looking at the

9The mutex lock will be explained in the next subsection.

34

Software for self-testing of the Telecommunication network of University of Freiburg

icons and identifying if they have: a green plus signs (i.e. working properly), a red minus
sign (i.e. not working properly) and a yellow exclamation mark (i.e. it was not tested).

• Triangles represent BTS stations

• Cell phones represent the external networks (E-Plus, Vodaphone, T-Mobile and
O2)

• Telephone represents the landline and a telephone with a mortarboard the Univer-
sity telephone network

• Servers represent the OpenBSC and LsfKs-Asterisk

• Two monitors represent the SIP system

The inference mechanism works as following: if a test case works, we can conclude that
the subsystems connected in-between the two ends are working properly as well. We use
the pChart library10 to generate the topological picture of our telecommunication system
[10].

Figure 23: Result image showing working, defected and not tested subsystems

On the right side of the result picture the test user can immediately identify the
network operability in percentage11. Bellow the network operability statistics are the
ping results statistics located. If one of the �elds is red it means the subsystem is not
online or cannot be seen by our server computer where the test software is located.

10It is under the GNU GPLv3 license and our project is nonpro�t!
11The test user has to take into account that this percentage is only valid if a full test is performed.

35

Software for self-testing of the Telecommunication network of University of Freiburg

9 Employing the test software system

In this section the reader can �nd out how to install and how to use the test system. Our
goal was to make a multi-platform test software, however we tested it only under Ubuntu
11.04 32 bit Linux OS and the given instruction manual is only tested under that OS.
The test software performed well, both on PC and MAC computers. One should keep
in mind that some of the libraries we had used do not work under the 64 bit version of
Linux OS.

9.1 Required software and libraries

In the next subsections, we will guide you how to install all the required software and
libraries to �awlessly run our test software on your employed server. You will be required
to have root access privileges and to open a new terminal window where the commands
will be typed in.

9.1.1 Python installation

Python was our programming language of choice12. The required version of Python is
2.7. One can easily install python by typing the following commands:

sudo apt−get update
sudo apt−get install python2.7

It will take a short amount of time to be installed. You will be required to enter the root
password.

9.1.2 Apache Web server installation

We had decided to use the Apache web server because of its wide support on the Internet
and safety reasons. If there are any bugs or security �aws, the patches are easily installed
with the Ubuntu update manager. The Apache web server can be easily installed by
typing the following command:

sudo apt−get install apache2

You might be required to follow other installation instructions printed on the terminal
screen. After the installation has completed successfully, one can test if it works by going
to the following web address: http://localhost. For con�guring the https please go to the
section 7.2.

9.1.3 SSH

Secure Shell (SSH) is a network protocol for secure data communication between two
computers inside of a network. All computers are required to have SSH installed on it.
You can easily install it by typing the following command:

sudo apt−get install ssh

12We had explained earlier why we have decided to use Python.

36

Software for self-testing of the Telecommunication network of University of Freiburg

9.1.4 MySQL database and MySQLdb library

The MySQLdb library is required to perform various operations on the MySQL database
within Python. We used the MySQLdb library instead of the native MySQL C API
_mysql library to make the code cleaner and more portable. We suggest you to install
�rst the MySQL database on the server computer. If you have installed MySQL you can
skip the next part. To star the installation process one can type the following commands:

sudo apt−get install mysql−server

You will be required to enter the Linux root password. At some point during the in-
stallation process, you will be required to enter the password for the MySQL database.
After you have performed the above step, we can proceed with the MySQLdb library
installation. By typing:

sudo apt−get install python−mysqldb

If the python-mysqldb name has changed, one can easily �nd the correct name of the �le
by issuing the following command:

apt−cache search MySQLdb

By typing in the commands given above, you should have successfully installed the
MySQLdb library.

9.1.5 Serial port library

The serial port library is required for the cell phones to communicate with the server
computer and the BeagleBoards. The required library for Python can be installed by
typing the following command:

sudo apt−get install python−serial

The installation should not produce any errors or warnings.

9.1.6 PJSUA library

PJSUA is an open source command line SIP user agent (soft-phone). We use the library
for the SIP handler. First, one needs to download the library from http://www.pjsip.

org/download.htm [13]. Then extract it to some folder. Then we will build the library
using make. This can be accomplished by typing the following commands:

cd your−pjsip−root−dir
./con�gure && make dep && make
cd pjsip−apps/src/python
sudo make

If you get an error similar to this one:

_pjsua.h:25:20: fatal error: Python.h: No such �le or directory
compilation terminated.
error: command 'gcc' failed with exit status 1

37

http://www.pjsip.org/download.htm
http://www.pjsip.org/download.htm

Software for self-testing of the Telecommunication network of University of Freiburg

Then you will be required to install python-dev as well, that matches your version of
python (e.g. python2.7-dev). You can do it by typing:

sudo apt−get install python2.7−dev

After you have successfully installed python2.7-dev, repeat the the commands given
above. Now you should have a properly installed PJSUA library. One can easily test if
the installation was successful by compiling a simple python code, python test.py, with
the following source code:

import pjsua

If you do not get any errors, you have successfully installed the library. More detail can
be found on our project wiki page [4].

9.1.7 pChart library

The pChart library is within our installation �les and does not require to be installed
individually. The library is only required if one uses the web interface and requires the
generated resulting image. The library is open source and does not require any licensing.
However, if one needs to learn how the library works, information can be found on the
pChart web page [10].

9.1.8 proctitle library

We had used this library to rename the currently executed process name. �The library
allows a process to change its title (as displayed by system tools such as ps and top).
Changing the title is mostly useful in multi-process systems, for example when a master
process is forked: changing the children's title allows to identify the task each process is
busy with.� [12]. The library can be easily installed by typing:

sudo easy_install setproctitle

9.2 Con�guring hardware

Before proceeding with the next steps, please connect all the cell phones to the USB hub
using the suitable cables. Then make sure the cables are recognized by the operating
system. This can be performed by typing the following command:

dmesg | grep ttyU

The given command should produce a result similar to:

[5178.753600] usb 1−1.2: pl2303 converter now attached to ttyUSB0

We have two di�erent ways to con�gure the cell phones, manually and automatic.
Both options can be accessed either using the website or the terminal window. Using
the manual con�guration from the terminal, the user con�gures everything him/herself.
The user will be presented with a few questions like the port address, cell phone number
and IMEI. After the user enters all the required parameters, the software will check if
the given port address is accessible and it will look for a response from the devices. Then

38

Software for self-testing of the Telecommunication network of University of Freiburg

you will be asked to enter the IMEI and the cell phone number of the device. If the
entered IMEI matches the device IMEI then the software will update the database with
the entered information. You can run, both the manual and automatic con�guration by
typing:

python gsmselftest.py −−devconf

In the automatic con�guration, the software will automatically try to detect every cell
phone that is connected to the USB hub. This con�guration option can detect up to nine
cell phones, that are connected to the server computer. We had set a limit to nine cell
phones because we required only �ve (four for the external GSM networks and one for
our internal GSM BST). The only limitation of the automatic cell phone con�guration
is that it only supports cell phones where we could read out the number using the AT
Modem commands since some cell phone manufacturers do not use the standardized AT
Modem commands.

39

Software for self-testing of the Telecommunication network of University of Freiburg

9.2.1 Con�guring the cell phones

It is important to write in the Siemens S55 cell phones their numbers if you want to use
automatic device con�guration. You can do that by following the next few steps:

Open the phone book on the S55 and choose <Special books> and press the select
button.

In the second step, press select on <OwnNumber>.

In the third and last step, enter your cell phone number and save it!

Figure 24: First step in con�guring the phone

Figure 25: Second step in con�guring the phone

Figure 26: Second step in con�guring the phone

40

Software for self-testing of the Telecommunication network of University of Freiburg

9.3 Location of the �les

For proper operation of the software, it is important that each �le is at its correct path
located. In the given section you can �nd out the correct path locations. If you are not
an expert, please do not change these locations. The following �les have to be located in
the /var/www-ssl/testsoftware/ folder:

drwxr−xr−x 7 root root 4096 2011−10−28 12:45 .
drwxr−xr−x 3 root root 4096 2011−10−20 17:06 ..
−rw−r−−r−− 1 root root 109 2011−10−26 16:55 .htaccess
−rw−r−−r−− 1 root root 20 2011−10−26 17:11 .htpasswd
drwxr−xr−x 2 root root 4096 2011−10−20 17:06 class
drwxr−xr−x 2 root root 4096 2011−10−20 17:06 css
−rw−r−−r−− 1 root root 7547 2011−10−20 17:06 delayedLoading.js
−rw−r−−r−− 1 root root 3431 2011−10−25 14:38 devconf.html
−rw−r−−r−− 1 root root 2024 2011−10−25 23:47 devcon�gAuto.php
−rw−r−−r−− 1 root root 1811 2011−10−26 13:44 devcon�gManual.php
−rw−r−−r−− 1 root root 2195 2011−10−25 23:45 devcon�g.php
−rw−r−−r−− 1 root root 3526 2011−10−27 14:51 devconf.php
−rwxr−xr−x 1 root root 725 2011−10−20 17:06 execute.php
drwxr−xr−x 2 root root 4096 2011−10−20 17:06 fonts
−rw−r−−r−− 1 root root 2259 2011−10−28 12:43 index.html
drwxr−xr−x 2 root root 4096 2011−10−20 17:06 icons
drwxr−xr−x 2 root root 4096 2011−10−25 14:10 Images
−rw−r−−r−− 1 root root 2038 2011−10−20 17:06 insertData.php
−rw−r−−r−− 1 root root 636 2011−10−26 13:43 insertdevice.php
−rw−r−−r−− 1 root root 10819 2011−10−20 17:06 loader.gif
−rw−r−−r−− 1 root root 2268 2011−10−26 16:07 main.php
−rw−r−−r−− 1 root root 5416 2011−10−20 17:06 moocheck.js
−rw−r−−r−− 1 root root 75836 2011−10−20 17:06 mootools.js
−rw−r−−r−− 1 root root 677 2011−10−20 17:06 mutexFunctions.php
−rw−r−−r−− 1 root root 9063 2011−10−25 17:20 mutexSmartTest.php
−rwxr−xr−x 1 root root 9143 2011−10−28 12:45 mutexTry.php
−rw−r−−r−− 1 root root 13304 2011−10−20 17:06 networkResult.php
−rw−r−−r−− 1 root root 8294 2011−10−21 19:02 post.php
−rw−r−−r−− 1 root root 19218 2011−10−21 17:36 startTest2.php
−rw−r−−r−− 1 root root 18852 2011−10−20 17:06 startTest.php
−rw−r−−r−− 1 root root 18787 2011−10−25 16:43 TaskTest.html
−rw−r−−r−− 1 root root 3685 2011−10−20 17:06 testCase.php
−rw−r−−r−− 1 root root 2545 2011−10−20 17:06 wait.gif

The startSoftware.py �le is required to be in the /etc/init.d/ folder, since it is required
to be start with the computer boot however if that does not work, one should start it
manually. This part of the software is responsible for starting the testing software from
the web page13. The main test software python �les should be located in /home/gsm-
selftest/SoftwareTesting/.

drwxr−xr−x 2 gsmselftest gsmselftest 4096 2011−11−03 14:29 .
drwxr−xr−x 30 gsmselftest gsmselftest 4096 2011−11−02 18:28 ..
−rwxr−−r−− 1 gsmselftest gsmselftest 2909 2011−10−20 17:54 ClientClass.py
−rw−r−−r−− 1 gsmselftest gsmselftest 3628 2011−10−20 17:54 ClientClass.pyc
−rwxr−xr−x 1 gsmselftest gsmselftest 9814 2011−11−02 16:19 ControllerClass.py

13The web page communicates with this script via a socket connection and sends a signal to start the
main test software.

41

Software for self-testing of the Telecommunication network of University of Freiburg

−rw−r−−r−− 1 gsmselftest gsmselftest 9247 2011−11−02 16:20 ControllerClass.pyc
−rwxr−xr−x 1 gsmselftest gsmselftest 15129 2011−11−02 15:32 DbClass.py
−rw−r−−r−− 1 gsmselftest gsmselftest 11712 2011−11−02 15:32 DbClass.pyc
−rw−r−−r−− 1 gsmselftest gsmselftest 8512 2011−11−02 13:30 GSMClass.py
−rw−r−−r−− 1 gsmselftest gsmselftest 7337 2011−11−02 13:42 GSMClass.pyc
−rw−r−−r−− 1 gsmselftest gsmselftest 8063 2011−11−02 13:24 GSMHandler.py
−rwxr−xr−x 1 gsmselftest gsmselftest 20346 2011−11−02 18:32 gsmselftest.py
−rwxr−−r−− 1 gsmselftest gsmselftest 698 2011−11−02 18:36 help.txt
−rwxr−xr−x 1 gsmselftest gsmselftest 8661 2011−11−02 16:35 initTestClass.py
−rw−r−−r−− 1 gsmselftest gsmselftest 7497 2011−11−02 16:37 initTestClass.pyc
−rwxr−−r−− 1 gsmselftest gsmselftest 645 2011−10−20 17:54 LogFileClass.py
−rw−r−−r−− 1 gsmselftest gsmselftest 1509 2011−10−20 17:54 LogFileClass.pyc
−rwxr−−r−− 1 gsmselftest gsmselftest 817 2011−10−20 17:54 PingClass.py
−rw−r−−r−− 1 gsmselftest gsmselftest 1263 2011−10−20 17:54 PingClass.pyc
−rwxr−−r−− 1 gsmselftest gsmselftest 3982 2011−10−20 17:54 ServerClass.py
−rw−r−−r−− 1 gsmselftest gsmselftest 4596 2011−10−20 17:57 ServerClass.pyc
−rw−r−−r−− 1 gsmselftest gsmselftest 4129 2011−10−20 23:17 WebsiteCommClass.py
−rw−r−−r−− 1 gsmselftest gsmselftest 4802 2011−10−20 23:17 WebsiteCommClass.pyc
−rwxr−xr−x 1 gsmselftest gsmselftest 5252 2011−10−22 03:58 SIPHandler.py
−rwxr−−r−− 1 gsmselftest gsmselftest 1267 2011−11−02 14:07 SSHTunnelBoxClass.py
−rw−r−−r−− 1 gsmselftest gsmselftest 1852 2011−11−02 14:19 SSHTunnelBoxClass.pyc
−rw−r−−r−− 1 gsmselftest gsmselftest 323 2011−11−02 18:44 startSoftware.py
−rwxr−xr−x 1 gsmselftest gsmselftest 6378 2011−11−02 16:13 truthTableClass.py
−rw−r−−r−− 1 gsmselftest gsmselftest 4583 2011−11−02 16:16 truthTableClass.pyc
−rwxr−xr−x 1 gsmselftest gsmselftest 2248 2011−10−28 14:04 usbDetectClass.py
−rw−r−−r−− 1 gsmselftest gsmselftest 3590 2011−10−28 14:05 usbDetectClass.pyc

9.4 Setting up the parameters

After con�guring the hardware, https and .htaccess on the web server, it is important
to modify the �les for proper operations. In the given section you can �nd out how to
con�gure the rest of the �les (e.g. database passwords, etc.). The following �les you
have to modify to have a working database access: initTestClass.py, GsmSelfTest.py,
UsbDetectClass.py and truthtableClass.py.

9.5 Test descriptions

In the following section we will describe the tests that can be performed and what kind
of problems they can identify. There are �ve types of tests:

• Smart test

• SIP test

• GSM test

• Everything test

• Manual test

Each test will be described in the next subsections.

9.5.1 Smart test

The smart test is not called smart without a reason. It tries automatically to identify
problems inside of the telecommunication network. The user is not required to de�ne

42

Software for self-testing of the Telecommunication network of University of Freiburg

what kind of tests have to be performed. In the �rst part the test software communicates
with the database to see what systems are available. In the next step it performs a
call from the University telephone system to a random local cell phone14 inside of our
University GSM network. While executing this task, automatically the Asterisk server,
OpenBSC and a random nanoBTS (or the one cell phone in RZ) are tested. The next task
to be performed in the smart test, a randomly selected cell phone inside of our local GSM
network will try to call: a random cell phone within the external (O2, Vodaphone,E-Plus
or T-Mobile) or local GSM network. This might test the external network and will test
it with high probability, however the probability exists to make a local to local GSM test
call. In the third task, we perform a test where we call from the landline a random cell
phone inside of our local GSM network. In the fourth or last task, we call from SIP to
the service we did not test yet (e.g. if we did not test the external GSM network using
the second test task, then in this last task we will exploit it). After the smart test had
been completed you will be presented with the results.

9.5.2 SIP test

The SIP test option will perform test in such a way that all the SIP subsystems are tested
(SIP and University telephone network). It will try to identify if there are any problems
on the Asterisk server and our University telephone network, including incoming and
outgoing calls from the SIP side.

9.5.3 GSM test

In the GSM test both GSM networks get tested, the local and the external GSM network.
We test the nanoBTS controller boxes (i.e. BeagleBoards) as well. Using this test, both
incoming and outgoing calls are performed, we can detect possible errors on the OpenBSC
and the nanoBTS.

9.5.4 All test

The All test selects all the given tests and executes them step-by-step. It is the test that
takes the greatest amount of time. While the test are performed, results are immediately
printed in the terminal window or on the web site.

9.5.5 Manual test

The Manual test as the name itself says, is the test where you can manually select what
kind of tests you want to be performed.

14Local cell phone or local GSM network means our University GSM Network or RZ GSM.

43

Software for self-testing of the Telecommunication network of University of Freiburg

9.6 Result descriptions

In the following table one can see the messages returned by the test software! These
messages should guide the test user operator to debug the system.

Number Code Code number description

1 200 Call was OK

2 604 General Handler Error: Destination handler did not respond. Timeout

3 998 General Handler Error: Could not connect to the destination handler!

4 605 General Handler Error: Caller handler did not respond. Timeout

5 999 General Handler Error: Could not connect to the caller handler!

6 486 Call Failed

7 333 Could not establish a connection to the database!

8 100 Missing account detail

9 402 Payment Required (E-Plus Card)

10 801 Connection to caller established, but the device does not respond

11 802 Connection to destination established, but the device does not respond

12 501 Destination server Internal Error

13 502 Caller server Internal Error

The errors can be described the following way:

• 200, Connection between the caller and callee was properly established

• 604, Callee handler has a problem during executing the test, a connection error
between caller and callee

• 998, Controller cannot establish a connection and send messages to the callee han-
dler but the callee handler is alive

• 605, Caller handler has a problem during executing the test, a connection error
between caller and callee

• 999, Controller cannot establish a connection and send messages to the caller han-
dler but the caller handler is alive

• 486, Call test failled, the connection between the caller and callee could not be
established

• 500, Caller handler cannot be reached from the server

• 501, Callee handler cannot be reached from the server

• 333, Cannot login to the MySQL database

• 100, Software cannot sign in to the SIP account(SIP at Asterisk, Landline at sip-
gate.de, SIP at University telephone network), due to missing or incorrect infor-
mation in the device address table

• 402, Payment required for the E-Plus SIM card

• 801, Caller device on the handler times out or is not properly connected

• 802, Callee device on the handler times out or is not properly connected

44

Software for self-testing of the Telecommunication network of University of Freiburg

9.7 Using the software

In this section, you will be taught step by step how to use our test software. There are
two options to run our test software, from the web site or the terminal. The �rst is easier,
but the second is easy as well however requires terminal skills.

9.7.1 Web site guide

Once you enter the address in the address bar of your browser (e.g. https://localhost/
testsoftware). You will be required to enter your username and password for the web
page15. If you entered the correct username and password you should see the same image
as in the following �gure. Here you can choose what kind of test you want to perform or

Figure 27: Web page of test software

maybe if you want to con�gure the devices (manually or automatically). If you press the
�Smart test� button, you have to wait a few moments and the results should appear in a
short amount of time. However, if you pressed the �Choose the test� button, you will be
presented with a new page, given in �gure 28. You will have to select the tests you want
to perform manually or to press on the left side one of the given buttons for di�erent tests.
You can choose between �SIP Test�, �GSM Test�, �Check all� and �Uncheck all�. �Check
all� will select all the possible tests, whereas �Uncheck all� will deselect all of them. After
you �nished the procedure of selecting the tests, you should press the �Submit� on the
left side. Wait a few moments and the results will start to appear in real time. After
the table on the left is �lled (i.e. after all the tests have been completed) a result image
will be generated on the right side, can be seen in �gure 20. However, if your pressed
the �Device con�guration� button, then you will end up on a page as given in �gure 30.

15The username and password creation process is explained in section 7.2.2.

45

Software for self-testing of the Telecommunication network of University of Freiburg

Figure 28: Manually selecting the tests

If you press the �Automatic con�guration� button, the test software will try automat-
ically to match your cell phones with their port addresses and numbers. However, if the
automatic matching does not work, you will have to manually con�gure it. You can do
it by entering all the required information on the web site, as in �gure 31. Once you
correctly �lled in the required information, you should press the �Submit� button.

Figure 29: Result web page

46

Software for self-testing of the Telecommunication network of University of Freiburg

Figure 30: Device con�guration web page

Figure 31: Manual device con�guration page

9.7.2 Terminal guide

In the following text, we will guide you and show you step-by-step how to use the test
software from the terminal. All you have to do is just type the command for starting the
test software in the folder where it is located, ./gsmselftest.py �option (keep in mind
there are two dashes before option). You can perform the tests manually by typing what
you want to test or by choosing one of the prede�ned tests. For example, you want to
test manually does the SIP work with the University telephone network, you would type

47

Software for self-testing of the Telecommunication network of University of Freiburg

Figure 32: Test software terminal options

the following: ./gsmselftest.py �db sip unisip. After the tests have been performed the

Figure 33: Example results from the terminal screen

results will be displayed. Green result text means the test was performed successfully
and red result text means that something is not working properly.

If you need to con�gure the cell phones manually or automatically, you can do it by
typing: ./gsmselftest.py �devconf (keep in mind there are two dashes before devconf).
Then you can press �a� on the keyboard for automatic con�guration or �m� for manual
con�guration. One should keep in mind that the terminal test software can be started
even through ssh, however with an additional command -X 16.

Figure 34: Test software device con�guration from terminal screen

16For example: ssh -X username@address

48

Software for self-testing of the Telecommunication network of University of Freiburg

10 Conclusion

As a result of our successfully �nished team project, we had felt how it is to work in
a team. We had learnt how to confront various software and hardware issues. The
problems were broken into smaller fragments and the solutions were derived in a step-
by-step approach.

While designing the software, we kept in mind that every single step should be well
thought-out, documented, tested and validated. At the end we joined all the �black-
boxes� together into one big piece of software. We ful�lled our stated requirements and
goals.

Despite the fact that our test software will be used by well educated engineers, we may
conclude that all the way along we thought about the usage-simplicity, safety and security
of our product. Our team members were enthusiastic about the idea that our team project
will contribute to a better performance and quality of the overall telecommunication
network, for all of the University sta� and our colleagues, the students.

49

Software for self-testing of the Telecommunication network of University of Freiburg

References

[1] Projects based on RZ-GSM, accessed on 10.06.2011, available at http://lab.ks.

uni-freiburg.de/projects/gsm/wiki.

[2] Python Programming Language - O�cial Website, accessed on 10.06.2011, available
at http://www.python.org/.

[3] MySQLdb User's Guide, accessed on 05.06.2011, available at
http://mysql-python.sourceforge.net/MySQLdb.html.

[4] [2011] GSM Selftest - Wiki - Lehrstuhl für Kommunikationssysteme, accessed on
20.09.2011, available at
http://lab.ks.uni-freiburg.de/projects/gsm-selftest/wiki.

[5] 17.2. socket - Low-level networking interface, accessed on 20.06.2011, available at
http://docs.python.org/library/socket.html.

[6] M. Ben-Ari Principles of the Spin Model Checker, Springer Verlag, Weizmann Insti-
tute of Science, Israel, ISBN: 978-1-84628-769-5, 2008.

[7] R. Natarajan, 3 Steps to perform SSH login without password using ssh-keygen &
ssh-copy-id, accessed on 18.08.2011, available at http://goo.gl/fX68N.

[8] P. Bramscher, Creating Certi�cate Authorities and self-signed SSL certi�cates, ac-
cessed on 05.09.2011, available at http://www.tc.umn.edu/~brams006/selfsign.

html.

[9] EnablingUseOfApacheHtaccessFiles, accessed on 18.08.2011, available at https://

help.ubuntu.com/community/EnablingUseOfApacheHtaccessFiles.

[10] pChart, accessed on 15.08.2011, available at http://www.pchart.net/.

[11] BeagleBoard System Reference Manual, accessed on 20.06.2011, available at http:
//beagleboard.org/static/BBSRM_latest.pdf.

[12] setproctitle 1.1.2, accessed on 20.10.2011, available at http://pypi.python.org/

pypi/setproctitle.

[13] Open source SIP stack and media stack for presence, im/instant messaging, and
multimedia communication, accessed on 20.10.2011, available at http://www.pjsip.
org/.

50

http://lab.ks.uni-freiburg.de/projects/gsm/wiki
http://lab.ks.uni-freiburg.de/projects/gsm/wiki
http://www.python.org/
http://mysql-python.sourceforge.net/MySQLdb.html
http://lab.ks.uni-freiburg.de/projects/gsm-selftest/wiki
http://docs.python.org/library/socket.html
http://goo.gl/fX68N
http://www.tc.umn.edu/~brams006/selfsign.html
http://www.tc.umn.edu/~brams006/selfsign.html
https://help.ubuntu.com/community/EnablingUseOfApacheHtaccessFiles
https://help.ubuntu.com/community/EnablingUseOfApacheHtaccessFiles
http://www.pchart.net/
http://beagleboard.org/static/BBSRM_latest.pdf
http://beagleboard.org/static/BBSRM_latest.pdf
http://pypi.python.org/pypi/setproctitle
http://pypi.python.org/pypi/setproctitle
http://www.pjsip.org/
http://www.pjsip.org/

	Introduction and Motivation
	Requirements
	Logical and algorithmic requirements
	Software requirements
	Hardware requirements

	Database design
	Software design
	Database access
	Controlling the cell phones
	Client and Server class
	Ping class
	Data logging
	SSH Tunnel Class
	USB Cell phone detection class
	Truth table class
	Init Test class
	Controller class

	Hardware design
	BeagleBoard
	Cell phones
	Cables for the cell phones
	Server

	Communication protocol
	Communication between the handler and controller
	Verification of the protocol

	Security and safety of the system
	Encryption of the communication channels
	Security on the web site
	Configuring the http secure protocol https
	Password protecting the web site using .htaccess

	Web page
	Communication between the web page and the test software
	Results on the web page

	Employing the test software system
	Required software and libraries
	Python installation
	Apache Web server installation
	SSH
	MySQL database and MySQLdb library
	Serial port library
	PJSUA library
	pChart library
	proctitle library

	Configuring hardware
	Configuring the cell phones

	Location of the files
	Setting up the parameters
	Test descriptions
	Smart test
	SIP test
	GSM test
	All test
	Manual test

	Result descriptions
	Using the software
	Web site guide
	Terminal guide

	Conclusion

