
Team project

�Software for self-testing of the Telecommunication

network of University of Freiburg�

Arda Akcay

Tri Atmoko

Re�k Hadºiali¢

October 5, 2011

Albert-Ludwigs-Universität Freiburg

Lehrstuhl für Komunikationsysteme

Prof. Dr. Gerhard Schneider

Supervisors:

Konrad Meier

Denis Wehrle

Sommersemester 2011

Software for self-testing of the Telecommunication network of University of Freiburg

Contents

1 Introduction and Motivation 3

2 Software concept 4

3 Introduction 5

3.1 Usage . 5

4 Design 6

5 Protocol 7

6 Security and safety of the test system 8

6.1 Encryption of the communication channels 8

7 Web page 10

8 Conclusion 11

2

Software for self-testing of the Telecommunication network of University of Freiburg

1 Introduction and Motivation

In the following report, the authors will try to give you a brief in-
sight into our team project. The goal of our project was to develop a
mechanism for automatic testing of our University Telecommunication
network. The Telecommunication network of University of Freiburg
consists of: our own internal GSM and telephone network systems;
GSM redirecting device (if one initiates a call to one of the four ex-
ternal GSM networks, it redirects the calls to: T-mobile, 02, Voda-
phone or E-Plus); a SIP gateway for landline calls inside of Germany
(sipgate.de) and international calls. Since we did not have access to
internal servers, our strategy was to exploit the existing systems and
infer the results out of our �ndings. Before we had started working on
our project, we had to analyze the overall network to come up with
test cases that contain the highest information content. The next step
in our procedure was to implement our ideas into a working piece of
software. Gradually we implemented a bit-by-bit of the �nal software.
Every single step was accompanied by testing and validation proce-
dures. At the end we connected all the �black-boxes� into one big
piece of software. We have ful�lled our requests and goals and made a
fully working and operable test software. Despite developing a working
software, all the way along we thought about the simplicity of the us-
age of the software. In the following chapters we will describe in more
detail our approach and how each subsystem works.

3

Software for self-testing of the Telecommunication network of University of Freiburg

2 Software concept

4

Software for self-testing of the Telecommunication network of University of Freiburg

3 Introduction

3.1 Usage

5

Software for self-testing of the Telecommunication network of University of Freiburg

4 Design

Figure 1: BeagleBoard, a linux-on-chip board where our controller software runs the GSM

device

6

Software for self-testing of the Telecommunication network of University of Freiburg

5 Protocol

Figure 2: Flowchart of the protocol, on the handler side

Figure 3: Flowchart of the protocol, on the controller side for the caller

Figure 4: Flowchart of the protocol, on the controller side for the receiver

7

Software for self-testing of the Telecommunication network of University of Freiburg

6 Security and safety of the test system

Safety and security of the software plays a major role in our project. It
is of vital importance that only as few as possible people have access to
our test system since the resulting data could be exploited to plan an
attack (e.g. assume the University alarm system uses the SIP gateway
to connect to the outside world and to alarm the police, if one knows
that the SIP gateway is not working properly, a burglar could plan
to rob the University building just at that moment.) Therefore the
choice to go Open Source is justi�ed due to the fact that one should
know how every single detail of the system works. All the time, while
we were working on the project, we were made aware of this issue by
Denis and Konrad. We decided to use asymmetric key cryptography,
where each side has two keys (private and public.) In the next sections
we will explain in more details how we applied the methods.

6.1 Encryption of the communication channels

At �rst we thoought to encrypt the data before sending them but since
none of us was an expert on encryption standards the idea was rejected.
Alongside the fact that none of us had been an expert in the �eld of
cryptography, we were not experts in the �eld of internet programming
either. One could �nd maybe a way to disable our server software with
various hacking methods (e.g. trying to open the port until the system
runs out of memory and in our case the system which we used on the
server side was a BeagleBoard with ARM architecture running on a
single chip TI OMAP processor, refer to the picture on �gure 1.) We
had to eliminate even the slightest possible threat in return for spend-
ing more time for debugging the test software system. Despite we were
aware of all these facts, we had to choose one of the plenty implemented
encryption standards on Linux. Denis and Konrad suggested using the
SSH Tunneling method. Using the SSH Tunneling method we could
hide the real port we use for our socket connection on the other hand
we could force the socket to accept only local connections (i.e. from the
machine where the handler software was running.) The �rst problem

8

Software for self-testing of the Telecommunication network of University of Freiburg

we faced was that SSH required a username and password, everytime
we created an SSH Tunnel. We could avoid this problem by copying
the public key from our server (where our test software runs) to the
BeagleBoard [2]. This can be performed by executing the following
commands in the terminal shell. One has to create �rst the private
and public keys on the local machine(i.e. server machine, where the
test software runs):
jsmith@local−host$ [Note: You are on local−host here]

jsmith@local−host$ ssh−keygen
Generating public/private rsa key pair.
Enter �le in which to save the key (/home/jsmith/.ssh/id_rsa):[Enter key]
Enter passphrase (empty for no passphrase): [Press enter key]
Enter same passphrase again: [Pess enter key]
Your identi�cation has been saved in /home/jsmith/.ssh/id_rsa.
Your public key has been saved in /home/jsmith/.ssh/id_rsa.pub.
The key �ngerprint is:
33:b3:fe:af:95:95:18:11:31:d5:de:96:2f:f2:35:f9 jsmith@local−host

Then one needs to copy the public key to the remote machine (Bea-
gleBoard) using ssh-copy-id:
jsmith@local−host$ ssh−copy−id −i ~/.ssh/id_rsa.pub remote−host
jsmith@remote−host's password:
Now try logging into the machine, with "ssh 'remote−host'", and check in:

.ssh/authorized_keys

to make sure we haven't added extra keys that you weren't expecting.

After we have created the public and private keys, and coppied the
public key on the machine to which we want to connect, we can test if
we can make an SSH connection to the remote machine:
jsmith@local−host$ ssh remote−host
Last login: Sun Nov 16 17:22:33 2008 from 192.168.1.2
[Note: SSH did not ask for password.]

jsmith@remote−host$ [Note: You are on remote−host here]

9

Software for self-testing of the Telecommunication network of University of Freiburg

7 Web page

Figure 5: Result image showing working, defected and not tested subsystems

10

Software for self-testing of the Telecommunication network of University of Freiburg

8 Conclusion

11

Software for self-testing of the Telecommunication network of University of Freiburg

References

[1] H. Simpson, Proof of the Riemann Hypothesis, preprint (2003),
available at http://www.math.drofnats.edu/riemann.ps.

[2] R. Natarajan, 3 Steps to perform SSH login without password us-

ing ssh-keygen & ssh-copy-id, accessed on 18.08.2011, available at
http://goo.gl/fX68N.

12

