
Team project

�Software for self-testing of the Telecommunication

network of University of Freiburg�

Arda Akcay
Tri Atmoko

Re�k Hadºiali¢

October 9, 2011

Albert-Ludwigs-Universität Freiburg
Lehrstuhl für Komunikationsysteme

Prof. Dr. Gerhard Schneider

Supervisors:
Konrad Meier
Denis Wehrle

Sommersemester 2011

Software for self-testing of the Telecommunication network of University of Freiburg

Contents

1 Introduction and Motivation 3

2 Requirements 4

3 Database design 5

4 Software design 6

4.1 Database access . 6

4.2 Controlling the cell phones . 6

4.3 subsection . 6

5 Hardware design 7

5.1 BeagleBoard . 7

5.2 Cell phones . 8

5.3 Cables for the cell phones . 8

6 Communication protocol 9

6.1 Hanlder side . 9

6.2 Veri�cation of the protocol . 10

7 Security and safety of the system 11

7.1 Encryption of the communication channels 11

7.2 Security on the web site . 12

8 Web page 16

8.1 Communication between the web page and the test software 16

8.2 Results on the web page . 16

9 Conclusion 18

2

Software for self-testing of the Telecommunication network of University of Freiburg

1 Introduction and Motivation

In the following report, the authors will try to give you a brief insight into our team
project. The goal of our project was to develop a mechanism for automatic testing
of our University Telecommunication network. The Telecommunication network
of University of Freiburg consists of: our own internal GSM and telephone network
systems; GSM redirecting device (if one initiates a call to one of the four external
GSM networks, it redirects the calls to: T-mobile, 02, Vodaphone or E-Plus); a
SIP gateway for landline calls inside of Germany (sipgate.de) and international
calls. Since we did not have access to internal servers, our strategy was to exploit
the existing systems and infer the results out of our �ndings. Before we had
started working on our project, we had to analyze the overall network to come
up with test cases that contain the highest information content. The next step
in our procedure was to implement our ideas into a working piece of software.
Gradually we implemented a bit-by-bit of the �nal software. Every single step was
accompanied by testing and validation procedures. At the end we connected all
the �black-boxes� into one big piece of software. We have ful�lled our requests and
goals and made a fully working and operable test software. Despite developing a
working software, all the way along we thought about the simplicity of the usage of
the software. In the following chapters we will describe in more detail our approach
and how each subsystem works.

3

Software for self-testing of the Telecommunication network of University of Freiburg

2 Requirements

4

Software for self-testing of the Telecommunication network of University of Freiburg

3 Database design

How we designed our database and why, explain in this section!

5

Software for self-testing of the Telecommunication network of University of Freiburg

4 Software design

4.1 Database access

4.2 Controlling the cell phones

Our �rst version of the developed program code for controlling the cell phones
used prede�ned timed values to send commands instead of using a state controlled
approach to con�rm that every command was successfuly received and executed by
the cell phone. It meant we had to make an enormous number of assumptions. In
comparison to our second approach, to build a state controlled cell phone control
class, our �rst approach was inferior and slower. The state controlled method
connected two cell phones, on the same base station, up to 15 times faster than
timed approach.

4.3 subsection

6

Software for self-testing of the Telecommunication network of University of Freiburg

5 Hardware design

In our team project we had the option to choose all the required hardware ourself
beside the two BeagleBoards, which we were supplied by Konrad and Dennis. Since
one of the project goals was to reduce the costs as much as it was possible, we had
tried to use some of the leftovers found in our lab.

5.1 BeagleBoard

�The BeagleBoard is an OMAP3530 platform designed speci�cally to address the
Open Source Community. It has been equipped with a minimum set of features

Figure 1: BeagleBoard, a linux-on-chip board where our controller software runs the GSM

device

to allow the user to experience the power of the OMAP3530 and is not intended
as a full development platform as many of the features and interfaces supplied
by the OMAP3530 are not accessible from the BeagleBoard� [5]. We run on it a

7

Software for self-testing of the Telecommunication network of University of Freiburg

special precompiled version of Ubuntu for the ARM processor type. The board
has an USB hub and network port attached to it. In our project it is connected to
our internal university LAN network and to a cell phone. We positioned the two
BeagleBoards in rooms where we had LAN access and GSM signal coverage of our
two local base stations.

5.2 Cell phones

Our �rst attempt was to control a Nokia cell phone 3310 with the supplied USB
connection cable. The protocols used by old versions of Nokia cell phones, as the
3310, use the F-Bus protocol. It was not easy to work with. After performing
various experiments we succeeded to send and to read SMS messages. Later on we
found out that it was not possible to send commands for receiving and making the
calls. In the meantime we found two Siemens phones, one M45 and S55. The �rst
one, Siemens M45, had a cable supplied with it and it was not di�cult to control
it with the standard set of AT modem commands. At the start we did not have
a cable supplied for the Siemens S55 phone. We controlled it over the Bluetooth
port.

5.3 Cables for the cell phones

8

Software for self-testing of the Telecommunication network of University of Freiburg

6 Communication protocol

6.1 Hanlder side

Figure 2: Flowchart of the protocol, on the handler side

Figure 3: Flowchart of the protocol, on the controller side for the caller

Figure 4: Flowchart of the protocol, on the controller side for the receiver

9

Software for self-testing of the Telecommunication network of University of Freiburg

6.2 Veri�cation of the protocol

The veri�cation results are listed here:

(Spin Version 6.1.0 −− 2 May 2011)
+ Partial Order Reduction

Full statespace search for:
never claim − (none speci�ed)
assertion violations +
cycle checks − (disabled by −DSAFETY)
invalid end states +

State−vector 44 byte, depth reached 65, â�â�â� errors: 0 â�â�â�
40 states, stored
3 states, matched
43 transitions (= stored+matched)
90 atomic steps

hash con�icts: 0 (resolved)
2.195 memory usage (Mbyte)

unreached in proctype Server1
(0 of 36 states)

unreached in proctype Server2
(0 of 36 states)

unreached in proctype Client
(0 of 67 states)

pan: elapsed time 0 seconds

10

Software for self-testing of the Telecommunication network of University of Freiburg

7 Security and safety of the system

Safety and security of the software plays a major role in our project. It is of vital
importance that only as few as possible people have access to our test system since
the resulting data could be exploited to plan an attack (e.g. assume the University
alarm system uses the SIP gateway to connect to the outside world and to alarm
the police, if one knows that the SIP gateway is not working properly, a burglar
could plan to rob the University building just at that moment.) Therefore the
choice to go Open Source is justi�ed due to the fact that one should know how
every single detail of the system works. All the time, while we were working on
the project, we were made aware of this issue by Denis and Konrad. We decided
to use asymmetric key cryptography, where each side has two keys (private and
public.) In the next sections we will explain in more details how we applied the
methods.

7.1 Encryption of the communication channels

At �rst we thoought to encrypt the data before sending them but since none of
us was an expert on encryption standards the idea was rejected. Alongside the
fact that none of us had been an expert in the �eld of cryptography, we were
neither experts in the �eld of internet programming. One could �nd maybe a way
to disable our server software with various hacking methods (e.g. trying to open
the port until the system runs out of memory and in our case the system which
we used on the handler side was a BeagleBoard with ARM architecture running
on a single chip TI OMAP processor, refer to the picture in �gure 1.) We had
to eliminate even the slightest possible threat in return for spending more time
for debugging the test software system. Despite we were aware of all these facts,
we had to choose one of the plenty implemented encryption standards on Linux.
Denis and Konrad suggested using the SSH Tunneling method.

Figure 5: SSH Tunnel, all the communication inside the tunnel is encrypted

Using the SSH Tunnel port forwading method we could hide the real port we
had used for our socket connection. On the other hand we could force the socket
to accept only local connections (i.e. from the machine where the handler software
was running.) The SSH Tunnel port forwarind method creates an encrypted tunnel
between the two computers and then it creates two ports, one on the local and
remote computer. All the data sent through the port on the local machine appear
on the port at the remote machine.

11

Software for self-testing of the Telecommunication network of University of Freiburg

The �rst problem we faced was that SSH required the username and password
everytime we tried to make an SSH connection. We could avoid this problem
by copying the public key from our server (where our test software runs) to the
BeagleBoard [2]. This can be performed by executing the following commands in
the terminal shell. One has to create �rst the private and public keys on the local
machine(i.e. server computer, where the test software runs):

jsmith@local−host$ [Note: You are on local−host here]

jsmith@local−host$ ssh−keygen
Generating public/private rsa key pair.
Enter �le in which to save the key (/home/jsmith/.ssh/id_rsa):[Enter key]
Enter passphrase (empty for no passphrase): [Press enter key]
Enter same passphrase again: [Pess enter key]
Your identi�cation has been saved in /home/jsmith/.ssh/id_rsa.
Your public key has been saved in /home/jsmith/.ssh/id_rsa.pub.
The key �ngerprint is:
33:b3:fe:af:95:95:18:11:31:d5:de:96:2f:f2:35:f9 jsmith@local−host

Then one needs to copy the public key to the remote machine (BeagleBoard)
using ssh-copy-id:

jsmith@local−host$ ssh−copy−id −i ~/.ssh/id_rsa.pub remote−host
jsmith@remote−host's password:
Now try logging into the machine, with "ssh 'remote−host'", and check in:

.ssh/authorized_keys

to make sure we haven't added extra keys that you weren't expecting.

After we have created the public and private keys, and coppied the public key
on the machine to which we want to connect, we can test if we can make an SSH
connection to the remote machine:

jsmith@local−host$ ssh remote−host
Last login: Sun Nov 16 17:22:33 2008 from 192.168.1.2
[Note: SSH did not ask for password.]

jsmith@remote−host$ [Note: You are on remote−host here]

The test was successful. We tested it with our SSH Tunnel port forwarding class
and it worked perfectly.

7.2 Security on the web site

Securing the communication channels without making certain the web site is safe
would be worthless. We decided to use the https protocol instead of the http since
a person in the middle could sni� our data (e.g. a person is connected with his/her
smart-phone over an unprotected wireless network) [3]. At the same time the web
site should be accessible only by the authorized personel. Our �rst approach to this
problem was to build an PHP page with MD5 hashed passwords, however we got
a suggestion by Konrad and Denis to use a safer encryption method implemented

12

Software for self-testing of the Telecommunication network of University of Freiburg

in the Apache web server software, .htaccess. By using these two techniques we
protected the web site of some vulnerabilities known to us. If the web site will
be only accessed from our local university network, we can additionally add an IP
�lter mask as well. In the following paragraph we will explain our procedure how
to generate the keys and to enable the https protocol.
First we want to generate a server key by typing the following command:

openssl genrsa −des3 −out server.key 4096

This will generate a 4096 bit long private server key, one is asked to enter two
times a password for the server.key. Using the generated private server key, we will
create a certi�cate signing request, server.csr. We were prompted with a series of
questions like country, state, organization name and etc which we had to enter to
resume.

openssl req −new −key server.key −out server.csr

In the next step we had to sign the certi�cate signing request and enter the
amount of days for how long it should be valid. In our case we entered the duration
of one year, one can make it for longer periods as well (i.e. the amount of 365 has
to be changed.)

openssl x509 −req −days 365 −in server.csr −signkey server.key −out server.crt

We were asked to enter the password again for server.key. After we have com-
pleted this step we had to make a version of the server.key which did not require
a password, server.key.insecure and we will rename the �les appropriately.

openssl rsa −in server.key −out server.key.insecure
mv server.key server.key.secure
mv server.key.insecure server.key

The generated �les are very sensitive, since they are our keys. After these steps
were completed, we had generated 4 �les (server.crt, server.csr, server.key and
server.key.secure). Now we need to enable the SSL engine on the Apache web
server. We coppied server.key and server.crt into /etc/appache2/ssl.

re�k@ubuntu:/etc/apache2$ sudo mkdir ssl
cp server.key /etc/apache2/ssl
cp server.crt /etc/apache2/ssl

Then we enabled SSL by typing in a2enmod ssl, �it is simply a general purpose
utility to establish a symlink between a module in /etc/apache2/mods-available to
/etc/apache2/mods-enabled (or give a message to the e�ect that a given module
does not exist or that it is already symlinked for loading)� [3].

re�k@ubuntu:/etc/apache2/ssl$ sudo a2enmod ssl
Enabling module ssl.
See /usr/share/doc/apache2.2−common/README.Debian.gz on how to con�gure SSL and create self

−signed certi�cates.
Run '/etc/init.d/apache2 restart' to activate new con�guration!

13

Software for self-testing of the Telecommunication network of University of Freiburg

In the next procedure we had to establish a symlink from the 'available' default-
ssl �le to the 'enabled' �le [3]. Then we created a folder where our secured PHP
�les will be located (e.g. https://some-domain-name.com/test-software).

re�k@ubuntu:/etc/apache2/ssl$ sudo ln −s /etc/apache2/sites−available/default−ssl /etc/apache2/
sites−enabled/000−default−ssl

re�k@ubuntu:/etc/apache2/ssl$ cd /var/
re�k@ubuntu:/var$ sudo mkdir www−ssl

We had backed up our old con�guration �les for the virtual hosts, for the case
that the damage the Apache con�guration �les. Then we edited the default-ssl
�le.

re�k@ubuntu:/var$ cd /etc/apache2/sites−available
re�k@ubuntu:/etc/apache2/sites−available$ sudo cp default default_original
re�k@ubuntu:/etc/apache2/sites−available$ sudo cp default−ssl default−ssl_original
re�k@ubuntu:/etc/apache2/sites−available$ sudo vim default−ssl

Only the begining of the �le is listed here and we have modi�ed the line starting
with DocumentRoot from DocumentRoot /var/www to DocumentRoot /var/www-
ssl (i.e. we had to rede�ne the location of our SSL directory.)

<IfModule mod_ssl.c>
<VirtualHost _default_:443>

ServerAdmin webmaster@localhost

DocumentRoot /var/www−ssl
<Directory />

Options FollowSymLinks
AllowOverride None

</Directory>

One should keep in mind that the port 443 should be free for Apache to use it.
In the proceeding step we had to ensure that Apache listens on the given port for
a https connection. One could test that by going into the /etc/apache2/ports.conf.

<IfModule mod_ssl.c>
If you add NameVirtualHost ∗:443 here, you will also have to change
the VirtualHost statement in /etc/apache2/sites−available/default−ssl
to <VirtualHost ∗:443>
Server Name Indication for SSL named virtual hosts is currently not
supported by MSIE on Windows XP.
Listen 443

</IfModule>

In our case it was set up correctly, since the command: Listen 443 was present.
In our last con�guration step we had to edit default-ssl �le to de�ne the correct
locations of our keys and to ensure the SSL engine was turned on.

re�k@ubuntu:/etc/apache2/sites−available$ sudo vim default−ssl

14

Software for self-testing of the Telecommunication network of University of Freiburg

The following part of the �le had to be found and modi�ed according to our
locations:

SSLEngine on

A self−signed (snakeoil) certi�cate can be created by installing
the ssl−cert package. See
/usr/share/doc/apache2.2−common/README.Debian.gz for more info.
If both key and certi�cate are stored in the same �le, only the
SSLCerti�cateFile directive is needed.
SSLCerti�cateFile /etc/apache2/ssl/server.crt
SSLCerti�cateKeyFile /etc/apache2/ssl/server.key

Server Certi�cate Chain:
Point SSLCerti�cateChainFile at a �le containing the

Finally we had con�gured our server and can proceed with the restart of the
apache web server. We created a test web site /var/www-ssl/index.php and navi-
gated our browser to https://localhost. The test was successful!

re�k@ubuntu:/etc/apache2/sites−available$ sudo /etc/init.d/apache2 restart
∗ Restarting web server apache2 [Sat Oct 08 21:52:51 2011] [warn] _default_ VirtualHost overlap on

port 443, the �rst has precedence
... waiting [Sat Oct 08 21:52:52 2011] [warn] _default_ VirtualHost overlap on port 443, the �rst has

precedence [OK]
re�k@ubuntu:/etc/apache2/sites−available$

15

Software for self-testing of the Telecommunication network of University of Freiburg

8 Web page

One of the requests of our team project was to build a test system that could be
started from the web site. Since we used the Open Source platform to base our
project on, it was certain we will use it for the web site as well. The dynamic parts
of the web site were programmed using PHP and JavaScript. The GUI was done
using CSS. The web site opens TCP/IP sessions between itself and the Python
test software. Due reasons explained in the section above, a test user needs �rst
to enter his username and password to acccess the web site. Then a test user can
manually select what type of tests he wants to perform or he can select already
de�ned test, like the simple, smart or full test. (Describe here these three type of
tests.) Data about the performing tests are inserted into the database only in the
case if the mutex lock for the web site can be obtained1. This way we can avoid
inserting data about the test in case there is already a test user on the website
performing some tests on the system.

8.1 Communication between the web page and the test software

Our �rst idea was that the PHP �le starts the test software. However, parts of
our test software open new terminal windows and since PHP has restrictions for
starting GUI applications our approach was condemned for a failure at the start.
We had to deal with this problem and our solution to it was to write a little Python
script that will run in background and start our test software when required. Once
a person starts the test over the web site, it automatically connects to the Python
script over an TCP/IP socket. Before being able to start the test software one
needs �rst to obtain the mutex lock on the web site and to check if there is a
mutex lock for the test software running. Using this approach we can ensure that
only one user at the time can be on the web site and run only one instance of
the test software. In the next step we send the Python script a message to start
the test software. The test software obtains a mutex lock as well. When the test
software is started the web page checks if a software lock is obtained. Once it is
obtained we can proceed with creating a new socket connection between the web
site and the test software. Our TCP/IP communication between the web site and
the test software is not encrypted since both the web page and the test software
run on the same server computer. The mutex locks are freed after the tests are
performed. Our test software has a timeout timer in case that the web site hangs
or somehow the socket connection breaks where it automatically shuts down.

8.2 Results on the web page

All the performed test results are displayed on the web site. The results are
displayed in real time after each selected test case is performed. After all the test
cases have been performed a topological picture is generated which represents the

1The mutex lock will be explained in the next subsection.

16

Software for self-testing of the Telecommunication network of University of Freiburg

current state of the system, this can bee seen in the following �gure. Afterwards,
when the result picture is generated, the test user can easily see what is wrong in
the system. Various icons represent di�erent subsystems. Reading the test results
is simple as looking at the icons and identifying if they have: a green plus signs
(i.e. working properly), a red minus sign (i.e. not working properly) and a yellow
exclamation mark (i.e. it was not tested).

• Triangles represent BTS stations
• Cellphones represent the external networks (E-Plus, Vodaphone, T-Mobile
and O2)

• Telephone represents the landline and a telephone with a mortarboard the
University telephone network

• Servers represent the OpenBSC and LsfKs-Asterisk
• Two monitors represent the SIP system

The inference mechanism works as following: if a test case works, we can con-
clude that the subsystems connected inbetween the two ends are working properly
as well. We use the pChart library2 to generate the topological picture of our
telecommunication system [4].

Figure 6: Result image showing working, defected and not tested subsystems

On the right side of the result picture the test user can immediatelly identify the
network operability in percentage3. Bellow the network operability statistics are
the ping results statistics located. If one of the �elds is red it means the subsystem
is not online or cannot be seen by our server computer where the test software is
located.

2It is under the GNU GPLv3 license and our project is nonpro�t!
3The test user has to take into account that this percantage is only valid if a full test is performed.

17

Software for self-testing of the Telecommunication network of University of Freiburg

9 Conclusion

18

Software for self-testing of the Telecommunication network of University of Freiburg

References

[1] H. Simpson, Proof of the Riemann Hypothesis, preprint (2003), available at
http://www.math.drofnats.edu/riemann.ps.

[2] R. Natarajan, 3 Steps to perform SSH login without password using ssh-keygen
& ssh-copy-id, accessed on 18.08.2011, available at http://goo.gl/fX68N.

[3] P. Bramscher, Creating Certi�cate Authorities and self-signed SSL certi�cates,
accessed on 05.09.2011, available at http://www.tc.umn.edu/~brams006/
selfsign.html.

[4] pChart, accessed on 15.08.2011, available at http://http://www.pchart.
net/.

[5] BeagleBoard System Reference Manual, accessed on 20.06.2011, available at
http://beagleboard.org/static/BBSRM_latest.pdf.

19

