summaryrefslogblamecommitdiffstats
path: root/src/target/firmware/layer1/prim_tx_nb.c
blob: d8d56c7e0c264c7ec0ff71e2de41a45c7aa24c98 (plain) (tree)



























































































































































































                                                                                                                                                                                  
/* Layer 1 - Transmit Normal Burst */

/* (C) 2010 by Dieter Spaar <spaar@mirider.augusta.de>
 * (C) 2010 by Harald Welte <laforge@gnumonks.org>
 *
 * All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */

#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include <defines.h>
#include <debug.h>
#include <memory.h>
#include <byteorder.h>
#include <osmocore/gsm_utils.h>
#include <osmocore/msgb.h>
#include <calypso/dsp_api.h>
#include <calypso/irq.h>
#include <calypso/tpu.h>
#include <calypso/tsp.h>
#include <calypso/dsp.h>
#include <calypso/timer.h>
#include <comm/sercomm.h>

#include <layer1/sync.h>
#include <layer1/agc.h>
#include <layer1/tdma_sched.h>
#include <layer1/mframe_sched.h>
#include <layer1/tpu_window.h>
#include <layer1/l23_api.h>

#include <l1a_l23_interface.h>

/* Channel type definitions for DEDICATED mode */
#define INVALID_CHANNEL    0
#define TCH_F              1
#define TCH_H              2
#define SDCCH_4            3
#define SDCCH_8            4

/* Channel mode definitions for DEDICATED mode */
#define SIG_ONLY_MODE      0    // signalling only
#define TCH_FS_MODE        1    // speech full rate
#define TCH_HS_MODE        2    // speech half rate
#define TCH_96_MODE        3    // data 9,6 kb/s
#define TCH_48F_MODE       4    // data 4,8 kb/s full rate
#define TCH_48H_MODE       5    // data 4,8 kb/s half rate
#define TCH_24F_MODE       6    // data 2,4 kb/s full rate
#define TCH_24H_MODE       7    // data 2,4 kb/s half rate
#define TCH_EFR_MODE       8    // enhanced full rate
#define TCH_144_MODE       9    // data 14,4 kb/s half rate


static const uint8_t ubUui[23]     = { 0x01, 0x03, 0x01, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b, 0x2b };

/* p1: type of operation (0: one NB, 1: one RACH burst, 2: four NB */
static int l1s_tx_resp(__unused uint8_t p1, __unused uint8_t burst_id,
		       __unused uint16_t p3)
{
	putchart('t');

	dsp_api.r_page_used = 1;

	return 0;
}

/* p1: type of operation (0: one NB, 1: one RACH burst, 2: four NB */
static int l1s_tx_cmd(uint8_t p1, uint8_t burst_id, uint16_t p3)
{
	uint8_t tsc;
	uint8_t mf_task_id = p3 & 0xff;
	uint8_t mf_task_flags = p3 >> 8;

	putchart('T');

	l1s_tx_apc_helper();

	if (p1 == 0) /* DUL_DSP_TASK, one normal burst */
		dsp_load_tch_param(0, SIG_ONLY_MODE, INVALID_CHANNEL, 0, 0, 0);
	else if (p1 == 2) /* DUL_DSP_TASK, four normal bursts */
		dsp_load_tch_param(0, SIG_ONLY_MODE, SDCCH_4, 0, 0, 0);

	/* before sending first of the four bursts, copy data to API ram */
	if (burst_id == 0) {
		uint16_t *info_ptr = dsp_api.ndb->a_cu;
		struct llist_head *tx_queue;
		struct msgb *msg;
		const uint8_t *data;
		int i;
		uint8_t j;

		/* distinguish between DCCH and ACCH */
		if (mf_task_flags & MF_F_SACCH) {
			puts("SACCH queue ");
			tx_queue = &l1s.tx_queue[L1S_CHAN_SACCH];
		} else {
			puts("SDCCH queue ");
			tx_queue = &l1s.tx_queue[L1S_CHAN_MAIN];
		}
		msg = msgb_dequeue(tx_queue);

		/* If the TX queue is empty, send idle pattern */
		if (!msg) {
			puts("TX idle pattern\n");
			data = ubUui;
		} else {
			puts("TX uplink msg\n");
			data = msg->l3h;
		}

		/* Fill data block Header */
		info_ptr[0] = (1 << B_BLUD);     // 1st word: Set B_BLU bit.
		info_ptr[1] = 0;                 // 2nd word: cleared.
		info_ptr[2] = 0;                 // 3rd word: cleared.

		/* Copy first 22 bytes in the first 11 words after header. */
		for (i=0, j=(3+0); j<(3+11); j++) {
			info_ptr[j] = ((uint16_t)(data[i])) | ((uint16_t)(data[i+1]) << 8);
			printf("%02x %02x ", data[i], data[i+1]);
			i += 2;
		}
		/* Copy last UWORD8 (23rd) in the 12th word after header. */
		info_ptr[14] = data[22];
		printf("%02x\n", data[22]);

		if (msg)
			msgb_free(msg);
	}

	tsc = 7; // !!!!! nanoBTS configuration for SDCCH 0 !!!!!!!!

	dsp_load_tx_task(DUL_DSP_TASK, burst_id, tsc);
	dsp_end_scenario();

	l1s_tx_win_ctrl(l1s.serving_cell.arfcn, L1_TXWIN_NB, 0);
	tpu_end_scenario();

	return 0;
}

void l1s_tx_test(uint8_t base_fn, uint8_t type)
{
	printf("Starting TX %d\n", type);

	if (type == 0) {// one normal burst
		tdma_schedule(base_fn, &l1s_tx_cmd, 0, 0, 0);
		tdma_schedule(base_fn + 2, &l1s_tx_resp, 0, 0, 0);
	} else if (type == 2) { // four normal burst
		tdma_schedule(base_fn, &l1s_tx_cmd, 2, 0, 0);
		tdma_schedule(base_fn + 1, &l1s_tx_cmd, 2, 1, 0);
		tdma_schedule(base_fn + 2, &l1s_tx_resp, 2, 0, 0);
		tdma_schedule(base_fn + 2, &l1s_tx_cmd, 2, 2, 0);
		tdma_schedule(base_fn + 3, &l1s_tx_resp, 2, 1, 0);
		tdma_schedule(base_fn + 3, &l1s_tx_cmd, 2, 3, 0);
		tdma_schedule(base_fn + 4, &l1s_tx_resp, 2, 2, 0);
		tdma_schedule(base_fn + 5, &l1s_tx_resp, 2, 3, 0);
	}
}

/* sched sets for uplink */
const struct tdma_sched_item nb_sched_set_ul[] = {
	SCHED_ITEM(l1s_tx_cmd, 2, 0),					SCHED_END_FRAME(),
	SCHED_ITEM(l1s_tx_cmd, 2, 1),					SCHED_END_FRAME(),
	SCHED_ITEM(l1s_tx_resp, 2, 0), SCHED_ITEM(l1s_tx_cmd, 2, 2),	SCHED_END_FRAME(),
	SCHED_ITEM(l1s_tx_resp, 2, 1), SCHED_ITEM(l1s_tx_cmd, 2, 3),	SCHED_END_FRAME(),
				       SCHED_ITEM(l1s_tx_resp, 2, 2),	SCHED_END_FRAME(),
				       SCHED_ITEM(l1s_tx_resp, 2, 3),	SCHED_END_FRAME(),
	SCHED_END_SET()
};