summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorRefik Hadzialic2012-09-03 19:16:37 +0200
committerRefik Hadzialic2012-09-03 19:16:37 +0200
commit8716d7a7aa92d34bc6282d5c11521b2183b2afa5 (patch)
tree18e98fd76061be10b85dd1babf222881e844d678
parentSummary (diff)
downloadmalign-8716d7a7aa92d34bc6282d5c11521b2183b2afa5.tar.gz
malign-8716d7a7aa92d34bc6282d5c11521b2183b2afa5.tar.xz
malign-8716d7a7aa92d34bc6282d5c11521b2183b2afa5.zip
Added Image references!
-rw-r--r--vorlagen/thesis/maindoc.pdfbin17574779 -> 17587412 bytes
-rw-r--r--vorlagen/thesis/src/kapitel_x.tex58
-rw-r--r--vorlagen/thesis/src/maindoc.lof54
-rw-r--r--vorlagen/thesis/src/maindoc.lot20
4 files changed, 72 insertions, 60 deletions
diff --git a/vorlagen/thesis/maindoc.pdf b/vorlagen/thesis/maindoc.pdf
index 87d46a7..702e072 100644
--- a/vorlagen/thesis/maindoc.pdf
+++ b/vorlagen/thesis/maindoc.pdf
Binary files differ
diff --git a/vorlagen/thesis/src/kapitel_x.tex b/vorlagen/thesis/src/kapitel_x.tex
index aa08a4a..d173620 100644
--- a/vorlagen/thesis/src/kapitel_x.tex
+++ b/vorlagen/thesis/src/kapitel_x.tex
@@ -389,7 +389,7 @@ user's position.
\begin{figure}[ht!]
\centering
\includegraphics[scale=0.60]{img/NAV-Message.pdf}
- \caption{One frame of 1500 bits on L1 frequency carrier}
+ \caption{One frame of 1500 bits on L1 frequency carrier. Image courtesy of \citep{harper2010server-side}.}
\label{img:gpsframe}
\end{figure}
Each subframe can be divided into three fields of data,
@@ -494,7 +494,7 @@ $(1500 \, \mathrm{bits per frame}\, \cdot \, 25 \, \mathrm{frames}) / (50 \,\mat
\begin{figure}[ht!]
\centering
\includegraphics[scale=0.50]{img/GPS-Modulation.pdf}
- \caption{Modulation of the GPS signal L1}
+ \caption{Modulation of the GPS signal L1. Image courtesy of \citep{harper2010server-side}.}
\label{img:gpsmod}
\end{figure}
@@ -759,7 +759,7 @@ in figure \ref{img:multCAPhase}.
phase not, in this case the phase is shifted for $\pi$, then
$d_{C/A}$ is inverted (second figure).
If the phase shifts with time, then the amplitude and phase of $d_{C/A}$
- shall vary as well (third figure).}
+ shall vary as well (third figure). Image courtesy of \citep{diggelen2009a-gps}.}
\label{img:multCAPhase}
\end{figure}
@@ -785,7 +785,7 @@ section \ref{sec:Carrierdemod}.
\centering
\includegraphics[scale=0.50]{img/PRN-ChipRate.pdf}
\caption{Comparison between the original C/A code generated on the
- GPS satellite with two synthesized PRN codes with a different phase shift on the receiver.}
+ GPS satellite with two synthesized PRN codes with a different phase shift on the receiver. Image courtesy of \citep{understandGPS}.}
\label{img:prnCodeCompare}
\end{figure}
For the particular example, the matching phase shift was achieved with
@@ -827,7 +827,7 @@ $+5=(+1)\cdot(+1)+(-1)\cdot(-1)+(+1)\cdot(+1)+(+1)\cdot(+1)+(-1)\cdot(-1)$.
\begin{figure}[ht!]
\centering
\includegraphics[scale=0.50]{img/Correlation.pdf}
- \caption{Cross-correlation on three different signals}
+ \caption{Cross-correlation on three different signals. Image courtesy of \citep{understandGPS}.}
\label{img:correlatingSignals}
\end{figure}
The same principle applies to the transmitted C/A and
@@ -913,7 +913,7 @@ unknown frequency to be in range of $10 \, \mathrm{kHz}-25 \, \mathrm{kHz}$.
\begin{figure}[ht!]
\centering
\includegraphics[scale=0.70]{img/2D-SearchSpaceInk.pdf}
- \caption{Segment of the frequency/code delay search space for a single GPS satellite}
+ \caption{Segment of the frequency/code delay search space for a single GPS satellite. Image courtesy of \citep{diggelen2009a-gps}.}
\label{img:prnSearchSpace3d}
\end{figure}
@@ -974,7 +974,7 @@ in figure \ref{img:SearchSpace2d}.
\begin{figure}[ht!]
\centering
\includegraphics[scale=0.50]{img/2DSearchSpace.pdf}
- \caption{The total search space}
+ \caption{The total search space.}
\label{img:SearchSpace2d}
\end{figure}
@@ -990,7 +990,7 @@ first time the GPS receiver is turned on. It is known under the name of cold sta
\begin{figure}[ht!]
\centering
\includegraphics[scale=0.50]{img/frequencySearch.pdf}
- \caption{Idea of the frequency searching algorithm}
+ \caption{Idea of the frequency searching algorithm.}
\label{img:freqSearch}
\end{figure}
@@ -1025,7 +1025,7 @@ known location.
\begin{figure}[ht!]
\centering
\includegraphics[scale=0.50]{img/Localization.pdf}
- \caption{Basic distance estimation principle for one satellite}
+ \caption{Basic distance estimation principle for one satellite. Image courtesy of \citep{understandGPS}.}
\label{img:SatLocalization}
\end{figure}
In figure \ref{img:SatLocalization}, an example concept can be seen, where $\vec{u}=(x_u,y_u,z_u)$ represents the unknown
@@ -1051,7 +1051,7 @@ geometric distance $r$ is computed, as given in equation \eqref{eq:rDist}.
\begin{figure}[ht!]
\centering
\includegraphics[scale=0.50]{img/TimingLoc.pdf}
- \caption{Estimating the distance by phase shift $\Delta t =t_2 - t_1 =\tau$}
+ \caption{Estimating the distance by phase shift $\Delta t =t_2 - t_1 =\tau$. Image courtesy of \citep{understandGPS}.}
\label{img:TimingLoc}
\end{figure}
\begin{equation}
@@ -1425,7 +1425,8 @@ GSM1800&1710 - 1785&1805 - 1880& 512 - 885\\\bottomrule
\begin{figure}[ht!]
\centering
\includegraphics[scale=0.50]{img/GSMUpDownFreq.pdf}
- \caption{Frequency ranges of uplink and downlink channels in the GSM900 band. Each box represents a frequency band (channel).}
+ \caption{Frequency ranges of uplink and downlink channels in the GSM900 band. Each box represents a frequency band (channel).
+ Image courtesy of \citep{konrad} and \citep{dennis}.}
\label{img:GSMFreqRangChannel}
\end{figure}
\par Aside from using different frequency channels, each frequency channel is split up into eight time slots.
@@ -1452,7 +1453,7 @@ without disturbing users on different time slots.
\begin{figure}[ht!]
\centering
\includegraphics[scale=0.50]{img/GSMFreqTime.pdf}
- \caption{Each frequency channel is split into 8 time slots. More GSM users can be served at the ``same'' time.}
+ \caption{Each frequency channel is split into 8 time slots. More GSM users can be served at the ``same'' time. Image courtesy of \citep{0890064717}.}
\label{img:GSMFreqTime}
\end{figure}
@@ -1467,7 +1468,7 @@ SCH channels \citep[Chapter 4]{0470030704}.
\begin{figure}[ht!]
\centering
\includegraphics[scale=0.70]{img/GSMHierarchy.pdf}
- \caption{Hierarchy of the GSM frames.}
+ \caption{Hierarchy of the GSM frames. Image courtesy of \citep{0890064717}.}
\label{img:GSMHierarchy}
\end{figure}
@@ -1486,7 +1487,7 @@ was defined due to internal synchronization of the GSM network and cyphering bet
\begin{figure}[ht!]
\centering
\includegraphics[scale=0.50]{img/GSMBig.pdf}
- \caption{Basic GSM network block diagram.}
+ \caption{Basic GSM network block diagram. Image courtesy of \citep{konrad} and \citep{dennis}.}
\label{img:GSMBig}
\end{figure}
\label{sec:GSMNetStruct}
@@ -1618,7 +1619,7 @@ radio link control messages (signal strength and synchronization data) on the SA
\begin{figure}[ht!]
\centering
\includegraphics[scale=0.50]{img/SDCCHRequest.pdf}
- \caption{Initializing an successful SDCCH channel..}
+ \caption{Initializing an successful SDCCH channel. Image courtesy of \citep{0470844574}.}
\label{img:SDCCHReq}
\end{figure}
@@ -1671,7 +1672,8 @@ connected to the GSM network.}.
\centering
\includegraphics[scale=0.50]{img/RRLPRequest.pdf}
\caption{RRLP Request protocol. Assistance data can be sent before the request is made. If the assistance
- data are sent, their reception acknowledgement is sent as a response from the MS.}
+ data are sent, their reception acknowledgement is sent as a response from the MS.
+ Image courtesy of \citep{harper2010server-side} and \citep{04.31V8.18.0}.}
\label{img:RRLPReqProt}
\end{figure}
@@ -1918,7 +1920,7 @@ folowing section \ref{sec:rrlpassistance} more details of how assistance data ar
\centering
\includegraphics[scale=0.80]{img/RRLPReqExplained.pdf}
\caption{An example RRLP request. Constructing a binary RRLP request in PER from ASN.1. Yellow zero bits
- are extension markers or spare bits. }
+ are extension markers or spare bits. Image courtesy of \citep{harper2010server-side}.}
\label{img:RRLPReqExplained}
\end{figure}
@@ -2076,13 +2078,13 @@ Longitude is encoded as second compliment binary number \citep{3gppequations}.
\centering
\includegraphics[scale=0.5]{img/ElipsoidPoint.pdf}
\caption{Reference location is a 14 octet stream built according to the given rule as
- specified in the standard \citep{3gppequations} under section \textit{7.3.6}.}
+ specified in the standard \citep{3gppequations} under section \textit{7.3.6}. Image courtesy of \citep{3gppequations}.}
\label{img:refLocStandard}
\end{figure}
\begin{figure}[ht!]
\centering
\includegraphics[scale=0.5]{img/EarthElipsoid.pdf}
- \caption{World Geodetic System 1984}
+ \caption{World Geodetic System 1984. Image courtesy of \citep{harper2010server-side}.}
\label{img:earthElipsoid}
\end{figure}
The altitude is encoded as it is where one bit increments represent one meter incerements.
@@ -3150,7 +3152,7 @@ database but notices by the author.
\begin{figure}[ht!]
\centering
\includegraphics[scale=0.38]{img/googlemapsResults.pdf}
- \caption{Test rooms as well as the results delivered by the smart phones.}
+ \caption{Test rooms as well as the results delivered by the smart phones. Image courtesy of Google Maps.}
\label{img:googlemapsResults}
\end{figure}
@@ -3406,9 +3408,9 @@ be connected into a path and displayed where the GSM user spends his time. Along
described method, a machine learning algorithm could be developed to predict the
movement of GSM users \citep{predictMovements}.
-Tests could be performed if it possible if it can be tricked out by the software Dennis mentioned (protect my privacy)!
+%Tests could be performed if it possible if it can be tricked out by the software Dennis mentioned (protect my privacy)!
-\chapter{Summary and security issues}
+\chapter{Summary and discussion}
This thesis has investigated how difficult it is to integrate mobile assisted GPS localization in GSM
Networks. The aim of this work was set out to implement the ``first'' working open source RRLP
implementation in GSM networks, as well as to determine and evaluate the limits of this localization
@@ -3424,7 +3426,17 @@ consideration no information are sent to the GSM user and is a gray area from th
\citep{silentPolice1}. "The state found that it was not one, since there is no content. This is useful,
because if it is not a communication, it does not fall under the framework of the inviolability of
telecommunications described in Article 10 of the German Constitution." said Mathias Monroy from
-Heise Online \citep{silentPolice1}.
+Heise Online \citep{silentPolice1}. The development of a working RRLP application and obtained
+results from this work enhance the understanding of AGPS receivers and may be further used to
+better understand how the assistance data influence the obtained results.
+Finally, a number of important limitations in the obtained results need to be considered.
+Not all assistance data were available and the tests have been performed at different time points of the day.
+The amount of tested cell phones was not representative enough. However, this work has thrown up some
+questions in need of further investigation but it is only a tip of the iceberg! A future study
+investigating if further assistance data are provided to the cell phones would be very interesting.
+The produced RRLP software and obtained results may be used to develop new strategies aimed at
+protecting privacy of cell phone users.
+
diff --git a/vorlagen/thesis/src/maindoc.lof b/vorlagen/thesis/src/maindoc.lof
index db112c9..150353a 100644
--- a/vorlagen/thesis/src/maindoc.lof
+++ b/vorlagen/thesis/src/maindoc.lof
@@ -7,42 +7,42 @@
\contentsline {figure}{\numberline {1.5}{\ignorespaces Wireless Access Point tagging. The MS could be located anywhere where all three access points are visible, this area has a wavy background and is between access points 1, 2 and 4.\relax }}{9}{figure.caption.9}
\addvspace {10\p@ }
\contentsline {figure}{\numberline {2.1}{\ignorespaces GPS Simple working principle, a) example in 3D space with spheres b) example in 2D space with circles.\relax }}{13}{figure.caption.11}
-\contentsline {figure}{\numberline {2.2}{\ignorespaces One frame of 1500 bits on L1 frequency carrier\relax }}{15}{figure.caption.12}
+\contentsline {figure}{\numberline {2.2}{\ignorespaces One frame of 1500 bits on L1 frequency carrier. Image courtesy of \citep {harper2010server-side}.\relax }}{15}{figure.caption.12}
\contentsline {figure}{\numberline {2.3}{\ignorespaces Subframes always start with telemetry and handover words\relax }}{16}{figure.caption.13}
\contentsline {figure}{\numberline {2.4}{\ignorespaces BPSK Modulation - First signal is the carrier wave, and it is multiplied (mixed) with the second signal, which are the data to be transmitted. The resulting signal at the output of the satellite antenna is the third one.\relax }}{17}{figure.caption.14}
-\contentsline {figure}{\numberline {2.5}{\ignorespaces Modulation of the GPS signal L1\relax }}{18}{figure.caption.15}
+\contentsline {figure}{\numberline {2.5}{\ignorespaces Modulation of the GPS signal L1. Image courtesy of \citep {harper2010server-side}.\relax }}{18}{figure.caption.15}
\contentsline {figure}{\numberline {2.6}{\ignorespaces Two equivalent carrier waves with the same frequency but different phase shift\relax }}{21}{figure.caption.16}
\contentsline {figure}{\numberline {2.7}{\ignorespaces Demodulation of the L1 GPS signal\relax }}{21}{figure.caption.17}
-\contentsline {figure}{\numberline {2.8}{\ignorespaces Effects of the low frequency term on the demodulated output C/A wave on the GPS receiver (the explanations and figures are from top to bottom). If the synthesized frequency is correct, $f_{1}=f_{2}$, the low frequency term becomes a DC term and does not modify the output $d_{C/A}$ wave (first figure). If the frequency matches but the phase not, in this case the phase is shifted for $\pi $, then $d_{C/A}$ is inverted (second figure). If the phase shifts with time, then the amplitude and phase of $d_{C/A}$ shall vary as well (third figure).\relax }}{23}{figure.caption.18}
-\contentsline {figure}{\numberline {2.9}{\ignorespaces Comparison between the original C/A code generated on the GPS satellite with two synthesized PRN codes with a different phase shift on the receiver.\relax }}{24}{figure.caption.19}
-\contentsline {figure}{\numberline {2.10}{\ignorespaces Cross-correlation on three different signals\relax }}{25}{figure.caption.20}
-\contentsline {figure}{\numberline {2.11}{\ignorespaces Segment of the frequency/code delay search space for a single GPS satellite\relax }}{27}{figure.caption.21}
-\contentsline {figure}{\numberline {2.12}{\ignorespaces The total search space\relax }}{28}{figure.caption.22}
-\contentsline {figure}{\numberline {2.13}{\ignorespaces Idea of the frequency searching algorithm\relax }}{28}{figure.caption.23}
-\contentsline {figure}{\numberline {2.14}{\ignorespaces Basic distance estimation principle for one satellite\relax }}{29}{figure.caption.24}
-\contentsline {figure}{\numberline {2.15}{\ignorespaces Estimating the distance by phase shift $\Delta t =t_2 - t_1 =\tau $\relax }}{30}{figure.caption.25}
+\contentsline {figure}{\numberline {2.8}{\ignorespaces Effects of the low frequency term on the demodulated output C/A wave on the GPS receiver (the explanations and figures are from top to bottom). If the synthesized frequency is correct, $f_{1}=f_{2}$, the low frequency term becomes a DC term and does not modify the output $d_{C/A}$ wave (first figure). If the frequency matches but the phase not, in this case the phase is shifted for $\pi $, then $d_{C/A}$ is inverted (second figure). If the phase shifts with time, then the amplitude and phase of $d_{C/A}$ shall vary as well (third figure). Image courtesy of \citep {diggelen2009a-gps}.\relax }}{23}{figure.caption.18}
+\contentsline {figure}{\numberline {2.9}{\ignorespaces Comparison between the original C/A code generated on the GPS satellite with two synthesized PRN codes with a different phase shift on the receiver. Image courtesy of \citep {understandGPS}.\relax }}{24}{figure.caption.19}
+\contentsline {figure}{\numberline {2.10}{\ignorespaces Cross-correlation on three different signals. Image courtesy of \citep {understandGPS}.\relax }}{25}{figure.caption.20}
+\contentsline {figure}{\numberline {2.11}{\ignorespaces Segment of the frequency/code delay search space for a single GPS satellite. Image courtesy of \citep {diggelen2009a-gps}.\relax }}{27}{figure.caption.21}
+\contentsline {figure}{\numberline {2.12}{\ignorespaces The total search space.\relax }}{28}{figure.caption.22}
+\contentsline {figure}{\numberline {2.13}{\ignorespaces Idea of the frequency searching algorithm.\relax }}{28}{figure.caption.23}
+\contentsline {figure}{\numberline {2.14}{\ignorespaces Basic distance estimation principle for one satellite. Image courtesy of \citep {understandGPS}.\relax }}{29}{figure.caption.24}
+\contentsline {figure}{\numberline {2.15}{\ignorespaces Estimating the distance by phase shift $\Delta t =t_2 - t_1 =\tau $. Image courtesy of \citep {understandGPS}.\relax }}{30}{figure.caption.25}
\contentsline {figure}{\numberline {2.16}{\ignorespaces Taylor series approximation for a point $a=0.5$ where $n$ is the Taylor polynomial degree.\relax }}{32}{figure.caption.26}
\contentsline {figure}{\numberline {2.17}{\ignorespaces Basic AGPS principle\relax }}{35}{figure.caption.27}
\addvspace {10\p@ }
-\contentsline {figure}{\numberline {3.1}{\ignorespaces Frequency ranges of uplink and downlink channels in the GSM900 band. Each box represents a frequency band (channel).\relax }}{39}{figure.caption.29}
-\contentsline {figure}{\numberline {3.2}{\ignorespaces Each frequency channel is split into 8 time slots. More GSM users can be served at the ``same'' time.\relax }}{40}{figure.caption.30}
-\contentsline {figure}{\numberline {3.3}{\ignorespaces Hierarchy of the GSM frames.\relax }}{40}{figure.caption.31}
-\contentsline {figure}{\numberline {3.4}{\ignorespaces Basic GSM network block diagram.\relax }}{42}{figure.caption.32}
-\contentsline {figure}{\numberline {3.5}{\ignorespaces Initializing an successful SDCCH channel..\relax }}{46}{figure.caption.35}
+\contentsline {figure}{\numberline {3.1}{\ignorespaces Frequency ranges of uplink and downlink channels in the GSM900 band. Each box represents a frequency band (channel). Image courtesy of \citep {konrad} and \citep {dennis}.\relax }}{39}{figure.caption.29}
+\contentsline {figure}{\numberline {3.2}{\ignorespaces Each frequency channel is split into 8 time slots. More GSM users can be served at the ``same'' time. Image courtesy of \citep {0890064717}.\relax }}{40}{figure.caption.30}
+\contentsline {figure}{\numberline {3.3}{\ignorespaces Hierarchy of the GSM frames. Image courtesy of \citep {0890064717}.\relax }}{40}{figure.caption.31}
+\contentsline {figure}{\numberline {3.4}{\ignorespaces Basic GSM network block diagram. Image courtesy of \citep {konrad} and \citep {dennis}.\relax }}{42}{figure.caption.32}
+\contentsline {figure}{\numberline {3.5}{\ignorespaces Initializing an successful SDCCH channel. Image courtesy of \citep {0470844574}.\relax }}{46}{figure.caption.35}
\addvspace {10\p@ }
-\contentsline {figure}{\numberline {4.1}{\ignorespaces RRLP Request protocol. Assistance data can be sent before the request is made. If the assistance data are sent, their reception acknowledgement is sent as a response from the MS.\relax }}{48}{figure.caption.36}
-\contentsline {figure}{\numberline {4.2}{\ignorespaces An example RRLP request. Constructing a binary RRLP request in PER from ASN.1. Yellow zero bits are extension markers or spare bits. \relax }}{54}{figure.caption.37}
-\contentsline {figure}{\numberline {4.3}{\ignorespaces Reference location is a 14 octet stream built according to the given rule as specified in the standard \citep {3gppequations} under section \textit {7.3.6}.\relax }}{58}{figure.caption.38}
-\contentsline {figure}{\numberline {4.4}{\ignorespaces World Geodetic System 1984\relax }}{58}{figure.caption.39}
-\contentsline {figure}{\numberline {4.5}{\ignorespaces Requested AGPS assistance data to be delivered\relax }}{64}{figure.caption.44}
+\contentsline {figure}{\numberline {4.1}{\ignorespaces RRLP Request protocol. Assistance data can be sent before the request is made. If the assistance data are sent, their reception acknowledgement is sent as a response from the MS. Image courtesy of \citep {harper2010server-side} and \citep {04.31V8.18.0}.\relax }}{48}{figure.caption.36}
+\contentsline {figure}{\numberline {4.2}{\ignorespaces An example RRLP request. Constructing a binary RRLP request in PER from ASN.1. Yellow zero bits are extension markers or spare bits. Image courtesy of \citep {harper2010server-side}.\relax }}{54}{figure.caption.37}
+\contentsline {figure}{\numberline {4.3}{\ignorespaces Reference location is a 14 octet stream built according to the given rule as specified in the standard \citep {3gppequations} under section \textit {7.3.6}. Image courtesy of \citep {3gppequations}.\relax }}{58}{figure.caption.38}
+\contentsline {figure}{\numberline {4.4}{\ignorespaces World Geodetic System 1984. Image courtesy of \citep {harper2010server-side}.\relax }}{58}{figure.caption.39}
+\contentsline {figure}{\numberline {4.5}{\ignorespaces Requested AGPS assistance data to be delivered\relax }}{65}{figure.caption.44}
\addvspace {10\p@ }
-\contentsline {figure}{\numberline {5.1}{\ignorespaces Flowchart for the RRLP assistance data generators\relax }}{71}{figure.caption.46}
+\contentsline {figure}{\numberline {5.1}{\ignorespaces Flowchart for the RRLP assistance data generators\relax }}{73}{figure.caption.46}
\addvspace {10\p@ }
-\contentsline {figure}{\numberline {6.1}{\ignorespaces nanoBTS with its plastic cover. Image courtesy of ip.access ltd\relax }}{76}{figure.caption.49}
-\contentsline {figure}{\numberline {6.2}{\ignorespaces nanoBTS with two external antennas and five connection ports\relax }}{77}{figure.caption.51}
-\contentsline {figure}{\numberline {6.3}{\ignorespaces Navilock NL-402U, opened up with the antenna and USB cable\relax }}{78}{figure.caption.53}
-\contentsline {figure}{\numberline {6.4}{\ignorespaces Cable connections, showing interconnection diagram\relax }}{79}{figure.caption.54}
+\contentsline {figure}{\numberline {6.1}{\ignorespaces nanoBTS with its plastic cover. Image courtesy of ip.access ltd\relax }}{78}{figure.caption.49}
+\contentsline {figure}{\numberline {6.2}{\ignorespaces nanoBTS with two external antennas and five connection ports\relax }}{79}{figure.caption.51}
+\contentsline {figure}{\numberline {6.3}{\ignorespaces Navilock NL-402U, opened up with the antenna and USB cable\relax }}{80}{figure.caption.53}
+\contentsline {figure}{\numberline {6.4}{\ignorespaces Cable connections, showing interconnection diagram\relax }}{81}{figure.caption.54}
\addvspace {10\p@ }
-\contentsline {figure}{\numberline {7.1}{\ignorespaces Test rooms as well as the results delivered by the smart phones.\relax }}{83}{figure.caption.56}
-\contentsline {figure}{\numberline {7.2}{\ignorespaces Test room 2 with the positions of the smart phones\relax }}{84}{figure.caption.57}
+\contentsline {figure}{\numberline {7.1}{\ignorespaces Test rooms as well as the results delivered by the smart phones. Image courtesy of Google Maps.\relax }}{85}{figure.caption.56}
+\contentsline {figure}{\numberline {7.2}{\ignorespaces Test room 2 with the positions of the smart phones\relax }}{86}{figure.caption.57}
\addvspace {10\p@ }
diff --git a/vorlagen/thesis/src/maindoc.lot b/vorlagen/thesis/src/maindoc.lot
index 8f30099..b6fee5b 100644
--- a/vorlagen/thesis/src/maindoc.lot
+++ b/vorlagen/thesis/src/maindoc.lot
@@ -7,17 +7,17 @@
\contentsline {table}{\numberline {3.2}{\ignorespaces Traffic channels on the Air interface\relax }}{45}{table.caption.33}
\contentsline {table}{\numberline {3.3}{\ignorespaces Control channels on the Air interface\relax }}{45}{table.caption.34}
\addvspace {10\p@ }
-\contentsline {table}{\numberline {4.1}{\ignorespaces GPS UTC Model content\relax }}{59}{table.caption.40}
-\contentsline {table}{\numberline {4.2}{\ignorespaces Navigation message (ephemeris) content\relax }}{60}{table.caption.41}
-\contentsline {table}{\numberline {4.3}{\ignorespaces Almanac message content\relax }}{61}{table.caption.42}
-\contentsline {table}{\numberline {4.4}{\ignorespaces GPS Ionosphere Model content\relax }}{61}{table.caption.43}
-\contentsline {table}{\numberline {4.5}{\ignorespaces Requested AGPS assistance data bit meaning\relax }}{65}{table.caption.45}
+\contentsline {table}{\numberline {4.1}{\ignorespaces GPS UTC Model content\relax }}{60}{table.caption.40}
+\contentsline {table}{\numberline {4.2}{\ignorespaces Navigation message (ephemeris) content\relax }}{61}{table.caption.41}
+\contentsline {table}{\numberline {4.3}{\ignorespaces Almanac message content\relax }}{62}{table.caption.42}
+\contentsline {table}{\numberline {4.4}{\ignorespaces GPS Ionosphere Model content\relax }}{62}{table.caption.43}
+\contentsline {table}{\numberline {4.5}{\ignorespaces Requested AGPS assistance data bit meaning\relax }}{66}{table.caption.45}
\addvspace {10\p@ }
\addvspace {10\p@ }
-\contentsline {table}{\numberline {6.1}{\ignorespaces Indicator LED status on the nanoBTS\relax }}{80}{table.caption.52}
+\contentsline {table}{\numberline {6.1}{\ignorespaces Indicator LED status on the nanoBTS\relax }}{82}{table.caption.52}
\addvspace {10\p@ }
-\contentsline {table}{\numberline {7.1}{\ignorespaces Smart phone models used for testing in the thesis.\relax }}{82}{table.caption.55}
-\contentsline {table}{\numberline {7.2}{\ignorespaces Smart phone RRLP test results\relax }}{86}{table.caption.58}
+\contentsline {table}{\numberline {7.1}{\ignorespaces Smart phone models used for testing in the thesis.\relax }}{84}{table.caption.55}
+\contentsline {table}{\numberline {7.2}{\ignorespaces Smart phone RRLP test results\relax }}{88}{table.caption.58}
\addvspace {10\p@ }
-\contentsline {table}{\numberline {A.3.1}{\ignorespaces Example uncertainties (latitude and longitude) for various integer values of $K$\relax }}{101}{table.caption.64}
-\contentsline {table}{\numberline {A.3.2}{\ignorespaces Example uncertainties (altitude) for various integer values of $K$\relax }}{102}{table.caption.65}
+\contentsline {table}{\numberline {A.3.1}{\ignorespaces Example uncertainties (latitude and longitude) for various integer values of $K$\relax }}{103}{table.caption.64}
+\contentsline {table}{\numberline {A.3.2}{\ignorespaces Example uncertainties (altitude) for various integer values of $K$\relax }}{104}{table.caption.65}