summaryrefslogtreecommitdiffstats
path: root/vorlagen/thesis/src/kapitel_A.tex
diff options
context:
space:
mode:
Diffstat (limited to 'vorlagen/thesis/src/kapitel_A.tex')
-rw-r--r--vorlagen/thesis/src/kapitel_A.tex323
1 files changed, 113 insertions, 210 deletions
diff --git a/vorlagen/thesis/src/kapitel_A.tex b/vorlagen/thesis/src/kapitel_A.tex
index 3fbbb2e..645068d 100644
--- a/vorlagen/thesis/src/kapitel_A.tex
+++ b/vorlagen/thesis/src/kapitel_A.tex
@@ -191,14 +191,14 @@ ip.access unit_id 1801 0
At this point the nanoBTS and OpenBSC configuration is done.
\newpage
-\subsection{Installation and configuration of GNSS assistance software}
+\subsection{Installation and configuration of RRLP assistance software}
\label{sec:appendSoft}
-To install the RRLP software that generates GNSS assistance data several
+To install the RRLP software that generates assistance data, several
libraries are required to be installed, \textit{cURL}\footnote{It may happen that
-the given download URLs are wrong and in the meantime have changed, but one
+the given download URLs are incorrect and have changed in the meantime, but one
can easily find the latest versions on \url{http://curl.haxx.se/} and \url{http://www.hyperrealm.com/libconfig/}},
\textit{libconfig} and \textit{SQLite}. \textit{cURL} was used
-for the purpose of safely downloading GNSS data from the
+for the purpose of safely downloading assistance data from the
Navigation Center of the US Coast Guard and Trimble server. \textit{libconfig}
library is used for reading in the configuration file, this
way compiling of the software whenever one changes the settings was avoided. The
@@ -220,9 +220,8 @@ cd libconfig-1.4.8/
make
sudo make install
\end{lstlisting}
-
Once the libraries have been successfully installed, the user may proceed
-with the configuration and compiling the GNSS assistance software, which is the
+with the configuration and compiling the RRLP assistance software, which is the
key software produced in this thesis. The configuration file can be found in the
same directory as the RRLP modules under the name: ``gnssrrlp.cfg''. The sample
configuration file is already preconfigured for the location of ``Angewandte
@@ -245,17 +244,14 @@ DD = D + \frac{M}{60} + \frac{S}{3600}
The altitude may be left as it is, set to 0, since it is not used in the current
measurement technique\footnote{If the value is set to zero,
it is important to set it to 0.0 because \textit{libconfig} would otherwise
-convert it to an integer however it is a floating point number.}. \todo{Describe other
-parameters as well.}
-
+convert it to an integer however it is a floating point number.}. The boolean
+variables can take \textit{true} or \textit{false} values.
\begin{lstlisting}
// An example configuration file for the GNSS RRLP software.
-name = "Configuration for GNSS and RRLP";
-
+name = "Configuration for RRLP";
// Change the settings if required:
settings =
-{
- config = ( {
+{config = ( {
ephemeris_url = "ftp://ftp.trimble.com/pub/eph/CurRnxN.nav";
almanac_url = "http://www.navcen.uscg.gov/ ?pageName=currentAlmanac&format=yuma";
latitude_of_BTS = 48.003601;
@@ -269,26 +265,18 @@ settings =
extra_seconds_to_add = 7;
timezone_of_BTS = 1;
time_to_refresh_ephem = 1;
- time_to_refresh_alm = 1 ; } );
-};
+ time_to_refresh_alm = 1 ; } );};
\end{lstlisting}
-
-
-\todo{CHECK IF THIS IS CORRECT}
-\label{accuracyUncertainty}
The uncertainty of the latitude and longitude correctness can be described
using equation \eqref{eq:unclatlong} \citep{3gppequations}. The uncertainty of
$r$ is expressed in meters, it defines how accurate is the specified location
of the BTS. In the configuration file, $K$ is set to 7, which corresponds to
-$r$ = 9.4872 m. Instead of using the integer parameter $K$ as the known variable,
-the equation \eqref{eq:unclatlong} can be rewritten as in \eqref{eq:unclatlongnew},
-where we can get the integer value $K$ for a previously selected $r$.
+$r$ = 9.4872 m.
\begin{equation}
\label{eq:unclatlong}
\centering
\begin{array}{l}
-\displaystyle r=C((1+x)^{K}-1) \\
-\displaystyle \\
+\displaystyle r=C((1+x)^{K}-1)\;\;
\displaystyle where \left\{ \begin{array}{rcl}
C & = & 10 \\
x & = & 0.1 \\
@@ -296,67 +284,33 @@ where we can get the integer value $K$ for a previously selected $r$.
\end{array}\right.
\end{array}
\end{equation}
-
-\begin{equation}
-\label{eq:unclatlongnew}
-\centering
-\begin{array}{l}
-\displaystyle K=\bigg\lceil\frac{ln(\frac{r}{C}+1)}{ln(1+x)}\bigg\rceil \\
-\displaystyle \\
-\displaystyle where \left\{ \begin{array}{rcl}
- C & = & 10 \\
- x & = & 0.1 \\
- r & \in & [0,1800]\, \mathrm{km}
-\end{array}\right.
-\end{array}
-\end{equation}
-
A set of uncertainties $r$ is given in table \ref{tab:unclatlong} for various integer values of $K$.
-\begin{table}[h]
-\centering
-\begin{tabular}{|c|c|}
-\hline
-Value of $K$ & Value of uncertainty $r$\\
-\hline
-0 & 0 m\\
-\hline
-1 & 1 m \\
-\hline
-2 & 2.1 m\\
-\hline
-3 & 3.3 m\\
-\hline
-- & - \\
-\hline
-20 & 57.3 m\\
-\hline
-- & -\\
-\hline
-60 & 3.0348 km\\
-\hline
-- & -\\
-\hline
-100 & 137.8 km\\
-\hline
-- & -\\
-\hline
-\end{tabular}
+\begin {table}[ht]
\caption{Example uncertainties (latitude and longitude) for various integer values of $K$}
-\label{tab:unclatlong}
-\end{table}
-
+\label{tab:unclatlong}\centering
+%\rowcolor{2}{light-gray}{}
+\scriptsize\fontfamily{iwona}\selectfont
+\begin{tabular}{llll}
+\toprule
+%$D$&&$P_u$&$\sigma_N$\\
+\textbf{Value of $K$}&\textbf{Value of uncertainty $r$}&\textbf{Value of $K$}&\textbf{Value of uncertainty $r$}\\\toprule
+0 & 0 m&20 & 57.3 m\\\midrule
+1 & 1 m&60 & 3.0348 km
+%2 & 2.1 m&100 & 137.8 km\\\midrule
+%3 & 3.3 m&- & -
+\\\bottomrule
+\end {tabular}
+\end {table}
Altitude uncertainty can be described using the same Binomial expansion method,
as given in \eqref{eq:uncalt},
however with altered constant values \citep{3gppequations}. The altitude uncertainty ranges between 0 m and
990.5 m ($h\in[0,990.5]\, \mathrm{m}$). Although the same constant name $K$ is used, it
-describes the altitude uncertainty, \eqref{eq:uncaltnew}.
-
+describes the altitude uncertainty. A set of uncertainties $h$ is given in table \ref{tab:uncalt} for various integer values of $K$.
\begin{equation}
\label{eq:uncalt}
\centering
\begin{array}{l}
-\displaystyle h=C((1+x)^{K}-1) \\
-\displaystyle \\
+\displaystyle h=C((1+x)^{K}-1) \;\;
\displaystyle where \left\{ \begin{array}{rcl}
C & = & 45 \\
x & = & 0.025 \\
@@ -364,88 +318,41 @@ describes the altitude uncertainty, \eqref{eq:uncaltnew}.
\end{array}\right.
\end{array}
\end{equation}
-
-\begin{equation}
-\label{eq:uncaltnew}
-\centering
-\begin{array}{l}
-\displaystyle K=\bigg\lceil\frac{ln(\frac{h}{C}+1)}{ln(1+x)}\bigg\rceil \\
-\displaystyle \\
-\displaystyle where \left\{ \begin{array}{rcl}
- C & = & 45 \\
- x & = & 0.025 \\
- h & \in & [0,990.5]\, \mathrm{m}
-\end{array}\right.
-\end{array}
-\end{equation}
-
-A set of uncertainties $h$ is given in table \ref{tab:uncalt} for various integer values of $K$.
-\begin{table}[h]
-\centering
-\begin{tabular}{|c|c|}
-\hline
-Value of $K$ & Value of uncertainty $h$\\
-\hline
-0 & 0 m\\
-\hline
-1 & 1.13 m \\
-\hline
-2 & 2.28 m\\
-\hline
-3 & 3.46 m\\
-\hline
-- & - \\
-\hline
-20 & 28.74 m\\
-\hline
-- & -\\
-\hline
-60 & 152.99 m\\
-\hline
-- & -\\
-\hline
-100 & 486.62 m\\
-\hline
-- & -\\
-\hline
-\end{tabular}
+\begin {table}[]
\caption{Example uncertainties (altitude) for various integer values of $K$}
-\label{tab:uncalt}
-\end{table}
-
-Confidence level is the next parameter in the configuration file that needs to be set.
-It can take any integer value between 0 and 127. The confidence level defines the
+\label{tab:uncalt}\centering
+%\rowcolor{2}{light-gray}{}
+\scriptsize\fontfamily{iwona}\selectfont
+\begin{tabular}{llll}
+\toprule
+%$D$&&$P_u$&$\sigma_N$\\
+\textbf{Value of $K$}&\textbf{Value of uncertainty $h$}&\textbf{Value of $K$}&\textbf{Value of uncertainty $h$}\\\toprule
+0 & 0 m&20 & 28.74 m\\\midrule
+1 & 1.13 m&60 & 152.99 m
+%2 & 2.28 m&100 & 486.62 m\\\midrule
+%3 & 3.46 m&- & -
+\\\bottomrule
+\end {tabular}
+\end {table}
+Confidence level can take any integer value between 0 and 127. The confidence level defines the
percentage of the confidence that the target entity, the GSM user one wants to locate, is within
-the geometric shape defined earlier. A value of 0 and between 100 and 127, may be
-interpreted as ``no information'' \citep{3gppequations}. The reason why the values are not
-limited to 100 is because of the nature of binary numbers and that $2^6$ bits is not sufficient
-to represent the number 100, but rather requires one bit more.
-
-Confidence level is followed by the ephemeris repair option. Ephemeris repair is a variable
-of the boolean type, it can take two different values \textit{true} or \textit{false}. Ephemeris
-data may contain errors or miss some satellite information \citep{NASA-Ephem-Errors}
-\citep{Stanford-Ephem-Errors} and the ephemeris repair function, if set to true,
-will take data of the previous measurement report. This introduces an error as well.
-
-To increase the speed of measurement report, reference time can be used to provide extra
-information for the A-GPS in the MS of target entity. This field is of boolean
-type, if set to true, reference time is included in the sent packets.
-
-Since the sent packets are not transmitted in real time but put on a stack and
-then sent to the MS, a time delay exists. A solution to this problem is to
-add extra seconds to the reference time being sent. In order to assess
-the amount of extra seconds to add, the GSM operator is required experimentally
-to verify his/her findings. \todo{see how much the reference time can deviate from current time}.
-
+the geometric shape defined earlier. A value between 0 and 100; 127 may be
+interpreted as ``no information'' \citep{3gppequations}.
+Ephemeris repair is a variable of the boolean type.
+Ephemeris data may contain errors or miss some
+satellite information \citep{NASA-Ephem-Errors} \citep{Stanford-Ephem-Errors}
+and the ephemeris repair function, if set to true, will take data of the previous
+measurement report. This introduces an error as well.
+Reference time can be used to provide extra information for the A-GPS in the
+MS of target entity. This field is of boolean type, if set to true, reference
+time is included in the sent packets. Since the sent packets are not transmitted
+in real time but put on a stack and then sent to the MS, a time delay exists.
The reference time being sent to the MS is Coordinated Universal Time (UTC). The GPS device
receives UTC time from the satellites and adjusts the computer time. To set the correct
time, time zone offset of the BTS ought to be set correctly.
-
Finally, the refresh time of downloading new almanac and ephemeris data has to be set.
-The variable uses the hour unit, how often the data are being downloaded. If the data are
-used from a local GNSS station, refresh time of the ephemeris data should be set to
-every 30 minutes or 0.5 hours. The almanac data are valid for up to 180 days \citep{GPS-Guide} but are updated
-usually every day\footnote{Almanac update times can be found here:
+The variable uses the hour unit, how often the data are being refreshed and downloaded. The almanac
+data are valid for up to 180 days \citep{GPS-Guide} but are updated usually every day\footnote{Almanac update times can be found here:
\url{http://www.navcen.uscg.gov/?pageName=currentNanus&format=txt}} \citep{GPS-Pentagon}.
\clearpage
@@ -492,39 +399,44 @@ Operational &Green - Steady & Default condition if none of the above apply&12 (L
\end {table}
\clearpage
-\section{GPS assistance data}
-Description of assistance data is given in the following tables. These
-are the RRLP assistance data converted in the RRLP packet generator software.
-
-\begin {table}[h]
-\caption{GPS UTC Model content. Table courtesy of \citep{harper2010server-side}.}
-\label{tbl:utcModel}\centering
+\section{GPS assistance data descriptions}
+Description of assistance data converted and sent inside the RRLP protocol.
+\begin {table}[ht!]
+\caption{Almanac message. Table courtesy of \citep{harper2010server-side}.}
+\label{tbl:almanacMessage}\centering
%\rowcolor{2}{light-gray}{}
\scriptsize\fontfamily{iwona}\selectfont
-\begin{tabular}{lllcc}
+\begin{tabular}{lll}
\toprule
%$D$&&$P_u$&$\sigma_N$\\
-\textbf{Field (IE)} & \textbf{Description}\\\toprule
-$A_{1}$&Drift coefficient of GPS time scale relative\\
-&to UTC time scale\\\midrule
-$A_{0}$&Bias coefficient of GPS time scale relative\\
-&to UTC time scale\\\midrule
-$t_{ot}$&Time data reference time of week\\\midrule
-$\Delta t_{LS}$&Current or past leap second count\\\midrule
-$WN_{0}$&Time data reference week number\\\midrule
-$WN_{LSF}$&Leap second reference week number\\\midrule
-$DN$&Leap second reference day number\\\midrule
-$\Delta t_{LSF}$&Current of future leap second count
+\textbf{Field (IE)}& \textbf{Description}\\\toprule
+SatelliteID&This is the satellite ID that is in the range of 0 to 63. PRN=SatelliteID + 1\\\midrule
+SV Health&Satellite health (e.q. 000 means the satellite is fully operational)\\\midrule
+$e$&``Eccentricity shows the amount of the orbit deviation from circular (orbit). It is the distance\\
+&between the foci divided by the length of the semi-major axis'' \citep{ubxGPSDict}\\\midrule
+TOA&Time of applicability, reference time for orbit and clock parameters (seconds). ``The number of\\
+&seconds in the orbit when the almanac data were generated'' \citep{ubxGPSDict}\\\midrule
+OI&Orbital inclination (radians). The angle to which the SV orbit meets the equator \citep{ubxGPSDict}\\\midrule
+RORA&Rate or right ascension (radians/second). ``Rate of change of the angle of right ascension as\\
+&defined in the Right Ascension mnemonic'' \citep{ubxGPSDict}\\\midrule
+$A^{1/2}$& Square root of semi-major axis (meters$^{1/2}$). `` This is defined as the measurement from the center\\
+&of the orbit to either the point of apogee or the point of perigee'' \citep{ubxGPSDict}\\\midrule
+$\Omega_0$& Right Ascension at Week (radians). Longitude of ascending node of orbit plane at weekly epoch\\\midrule
+$\omega$&Argument of perigee (semicircles). ``An angular measurement along the orbital path measured from\\
+&the ascending node to the point of perigee, measured in the direction of the SV's motion'' \citep{ubxGPSDict}\\\midrule
+$M_0$&Mean anomaly (radians)\\\midrule
+$a_{f0}$&Satellite clock bias (seconds). Satellite clock error at reference time\\\midrule
+$a_{f1}$&Satellite clock drift (seconds per second). Satellite clock error rate\\\midrule
+Week&Week number since the last reset (i.e. since year 1980 modulo 1024 weeks)
\\\bottomrule
\end {tabular}
\end {table}
-\begin {table}[h]
-\caption{GPS Ionosphere Model content. Table courtesy of \citep{harper2010server-side}.}
-\label{tbl:ionoModel}\centering
-%\rowcolor{2}{light-gray}{}
+\begin{table}[hc]
\scriptsize\fontfamily{iwona}\selectfont
-\begin{tabular}{llllc}
+\begin{minipage}[b]{.49\textwidth}
+ \centering
+ \begin{tabular}{ll}
\toprule
%$D$&&$P_u$&$\sigma_N$\\
\textbf{Field (IE)} & \textbf{Description}\\\toprule
@@ -538,11 +450,35 @@ $\beta_{2}$&Coefficient 2 of period of the model\\\midrule
$\beta_{3}$&Coefficient 3 of period of the model
\\\bottomrule
\end {tabular}
-\end {table}
+ \caption{GPS Ionosphere Model.}
+ \label{tbl:ionoModel}
+\end{minipage}
+\begin{minipage}[b]{.43\textwidth}
+ \centering
+\begin{tabular}{ll}
+\toprule
+%$D$&&$P_u$&$\sigma_N$\\
+\textbf{Field (IE)} & \textbf{Description}\\\toprule
+$A_{1}$&Drift coefficient of GPS time scale relative\\
+&to UTC time scale\\\midrule
+$A_{0}$&Bias coefficient of GPS time scale relative\\
+&to UTC time scale\\\midrule
+$t_{ot}$&Time data reference time of week\\\midrule
+$\Delta t_{LS}$&Current or past leap second count\\\midrule
+$WN_{0}$&Time data reference week number\\\midrule
+$WN_{LSF}$&Leap second reference week number\\\midrule
+$DN$&Leap second reference day number\\\midrule
+$\Delta t_{LSF}$&Current of future leap second count
+\\\bottomrule
+\end {tabular}
+ \caption{GPS UTC Model.}
+ \label{tbl:utcModel}
+\end{minipage}
+\end{table}
\newpage
\begin {table}[ht!]
-\caption{Navigation message (ephemeris) content. Table courtesy of \citep{harper2010server-side}.}
+\caption{Navigation message (ephemeris). Table courtesy of \citep{harper2010server-side}.}
\label{tbl:navMessage}\centering
%\rowcolor{2}{light-gray}{}
\scriptsize\fontfamily{iwona}\selectfont
@@ -590,39 +526,6 @@ Idot&Rate of inclination angle (semicircles/second)
\end {tabular}
\end {table}
\newpage
-\begin {table}[ht!]
-\caption{Almanac message content. Table courtesy of \citep{harper2010server-side}.}
-\label{tbl:almanacMessage}\centering
-%\rowcolor{2}{light-gray}{}
-\scriptsize\fontfamily{iwona}\selectfont
-\begin{tabular}{lll}
-\toprule
-%$D$&&$P_u$&$\sigma_N$\\
-\textbf{Field (IE)}& \textbf{Description}\\\toprule
-SatelliteID&This is the satellite ID that is in the range of 0 to 63. PRN=SatelliteID + 1\\\midrule
-SV Health&Satellite health (e.q. 000 means the satellite is fully operational)\\\midrule
-$e$&``Eccentricity shows the amount of the orbit deviation from circular (orbit).\\
-&It is the distance between the foci divided by the length of the semi-major axis'' \citep{ubxGPSDict}\\\midrule
-TOA&Time of applicability, reference time for orbit and clock parameters (seconds).\\
-&``The number of seconds in the orbit when the almanac data were generated'' \citep{ubxGPSDict}\\\midrule
-OI&Orbital inclination (radians). The angle to which the SV orbit meets\\
-&the equator \citep{ubxGPSDict}\\\midrule
-RORA&Rate or right ascension (radians/second). ``Rate of change of the angle of right ascension\\
-&as defined in the Right Ascension mnemonic'' \citep{ubxGPSDict}\\\midrule
-$A^{1/2}$& Square root of semi-major axis (meters$^{1/2}$). `` This is defined as the measurement\\
-&from the center of the orbit to either the point of apogee or the point of perigee'' \citep{ubxGPSDict}\\\midrule
-$\Omega_0$& Right Ascension at Week (radians). Longitude of ascending node of orbit plane at\\
-&weekly epoch\\\midrule
-$\omega$&Argument of perigee (semicircles). ``An angular measurement along the orbital path\\
-&measured from the ascending node to the point of perigee, measured in the direction of\\
-&the SV's motion'' \citep{ubxGPSDict}\\\midrule
-$M_0$&Mean anomaly (radians)\\\midrule
-$a_{f0}$&Satellite clock bias (seconds). Satellite clock error at reference time\\\midrule
-$a_{f1}$&Satellite clock drift (seconds per second). Satellite clock error rate\\\midrule
-Week&Week number since the last reset (i.e. since year 1980 modulo 1024 weeks)
-\\\bottomrule
-\end {tabular}
-\end {table}