summaryrefslogtreecommitdiffstats
path: root/vorlagen/thesis/src/kapitel_A.tex
blob: 2f7fae9dc8ad1c2e08964ae2db5fd6d2e63c8f0f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
\addchap{Appendix}
\numberwithin{equation}{subsection}
\numberwithin{table}{subsection}
\section{Installation and configuration guide}
In order to evaluate the localization system, it is required to install OpenBSC
and to modify the proper source files and compile the system. The aim of this
section is to describe that process in such detail that the presented material is
sufficient to reproduce equivalent or similar results. The guide 
was successfully tested out on the following operating systems: 
Ubuntu 10.04 LTS 64 bit and Ubuntu 12.04 LTS 64 bit. A self-bootable test 
USB system is supplied with the thesis and it can be evaluated without executing
the given steps. There is a marking difference between text given in light and
dark grey background color, the first ought to be typed in into the terminal window or
it may be an output produced by an application, whereas the later emphasizes a
file modification case. 
\subsection{Installation of OpenBSC}
In order to compile OpenBSC it is required to install the following precompiled
packages\footnote{If more details are required for the installation process a guide can be found at \citep{openbscInstall}.}:

\begin{itemize}\addtolength{\itemsep}{-0.8\baselineskip}
\item libdbi0
\item libdbi0-dev
\item libdbd-sqlite3
\item libortp-dev
\item build-essential
\item libtool
\item autoconf
\item automake
\item git-core
\item pkg-config
\end{itemize}

Before installing the required packages and libraries, to keep the
installation process clean and free of modifying other files, the
author will create a new directory. 
\begin{lstlisting}[backgroundcolor=\color{light-gray}]
mkdir gsm_localization
cd gsm_localization
\end{lstlisting}


By executing the following instructions the required libraries will be installed. 
\begin{lstlisting}[backgroundcolor=\color{light-gray}]
sudo apt-get install libdbi0-dev libdbd-sqlite3 build-essential
sudo apt-get install libtool autoconf automake git-core
sudo apt-get install pkg-config libortp-dev
\end{lstlisting}

After the packages were installed, \textit{libosmocore} library must be downloaded, compiled and installed.
By executing the following instructions: 
\begin{lstlisting}[backgroundcolor=\color{light-gray}][numbers = none]
git clone git://git.osmocom.org/libosmocore.git
cd libosmocore
autoreconf -fi
./configure
make
sudo make install
sudo ldconfig
cd ..
\end{lstlisting}

In the next step \textit{libosmo-abis} will be installed. 
\begin{lstlisting}[backgroundcolor=\color{light-gray}][numbers = none]
git clone git://git.osmocom.org/libosmo-abis.git
cd libosmo-abis
autoreconf -fi
./configure
make
sudo make install
sudo ldconfig
cd ..
\end{lstlisting}

After the previous steps have finished successfully, the author will
proceed with downloading, compiling and installing OpenBSC.
\begin{lstlisting}[backgroundcolor=\color{light-gray}][numbers = none]
git clone git://git.osmocom.org/openbsc.git
cd openbsc/openbsc
autoreconf -i
sudo export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig
./configure
make
\end{lstlisting}

At this point, OpenBSC should be successfully compiled. 
\newpage
\subsection{Configuring nanoBTS for OpenBSC}
To enable the nanoBTS and OpenBSC to be fully operational, the last configuration
steps have to be made. It is necessary to inform the nanoBTS of the IP address of 
the server that is running OpenBSC since it must connect to OpenBSC. We need
to find a free ARFCN channel where our system is
expected to operate\footnote{A licence has to be obtained from the Federal
Network Agency (German: \textit{Bundesnetzagentur}), otherwise it is ilegal and may
be considered as a criminal act.}. 

To find the ID and the IP address of the nanoBTS it is required to
start \textit{ipaccess-find}\footnote{The nanoBTS ought to be blinking in orange color
before starting \textit{ipaccess-find}.}.
\begin{lstlisting}[backgroundcolor=\color{light-gray}][numbers = none]
cd ~/gsm_localization/openbsc/openbsc/src/ipaccess
./ipaccess-find
\end{lstlisting}
\textit{ipaccess-find} will produce an output similar to the one given:
\begin{lstlisting}[backgroundcolor=\color{light-gray}][numbers = none]
Trying to find ip.access BTS by broadcast UDP...
MAC_Address='00:02:95:00:61:70'  IP_Address='132.230.4.63'
Unit_ID='1801/0/0'  Location_1=''  Location_2='BTS_NBT131G' 
Equipment_Version='165g029_73' 
Software_Version='168a352_v142b30d0'  
Unit_Name='nbts-00-02-95-00-61-70'  
Serial_Number='00110533'
\end{lstlisting} 
In the next step, the nanoBTS is informed of the OpenBSC IP
address by typing the following commands (the first IP address 
belongs to the server running OpenBSC and the second to the nanoBTS):
\begin{lstlisting}[backgroundcolor=\color{light-gray}][numbers = none]
cd ~/gsm_localization/openbsc/openbsc/src/ipaccess
./ipaccess-config -o 132.230.4.65 132.230.4.63 -r
\end{lstlisting}

It is required to create the directory where the configuration file
will be located and to modify the configuration file.
\begin{lstlisting}[backgroundcolor=\color{light-gray}][numbers = none]
sudo mkdir /usr/local/lcr
cd ~/gsm_localization/openbsc/openbsc/doc/
cd examples/osmo-nitb/nanobts 
sudo cp openbsc.cfg /usr/local/lcr
sudo vim /usr/local/lcr/openbsc.cfg
\end{lstlisting}

A free ARFCN channel can be found using a spectrum analyzer and by
setting the frequency range to the GSM frequency band. One 
has to slide through the frequencies shown on the X-axis,
and by looking at the Y-axis with appropriate frequency 
resolution\footnote{The frequency resolution must be set to 
$f_{CB}=200 \,\mathrm{kHz}$ or higher values for faster movement in the
frequency spectrum.}, where the received power is represented\footnote{
Dependent of the manufacturer and settings of the spectrum analyzer,
it can show signal amplitude, magnitude and power.}. By patiently
observing the Y-axis it can be easily seen on the X-axis which channels are
taken by other GSM service providers and which are free. The chosen channel
ought to be peak free. Once a free frequency channel has been found, it is
necessary to instruct the nanoBTS to operate in that frequency range.
The line, numbered 58, has to be modified with the
correct free ARFCN channel,in this case 877. 
\begin{lstlisting}
arfcn 877
\end{lstlisting}
The ARFCN channel value can be
calculated using the given formula in \eqref{eq:arfcn}, where $f_{start}$
is the starting frequency of the uplink bandwitdh for DCS1800, 
$f_{CB}$ is the channel bandwidth and \textit{Offset} is the offset\footnote{
A table with frequency channels can be found at the following URL:
\url{https://gsm.ks.uni-freiburg.de/arfcn.php}}.

\begin{equation}
\label{eq:arfcn}
\centering
\begin{array}{l}
\displaystyle f_{up}(\mathrm{ARFCN}) = f_{start}+f_{CB}\cdot(\mathrm{ARFCN}-\mathrm{Offset}) \\
\displaystyle \\
\displaystyle where \left\{ \begin{array}{rcl}
 f_{start} & = & 1710.2 \,\mathrm{MHz} \\ 
 f_{CB} & = & 200 \,\mathrm{kHz} \\
 \mathrm{Offset} & = & 512
\end{array}\right.
\end{array}
\end{equation}

%Multiple aligned equation
%\begin{equation}
%\label{eq:15}
%\centering
%where \left\{ \begin{array}{rcl}
% f_{start} & = & 1710.2 \,\mathrm{MHz} \\ 
% f_{CB} & = & 200 \,\mathrm{KHz} \\
% \mathrm{Offset} & = & 512
%\end{array}\right.
%\end{equation}


On line numbered 53, the last configuration file modification has to be made for the final configuration of the OpenBSC
software. The Unit ID from the output above has to be set\footnote{Indentation has to match the one of the
configuration file.}. 
\begin{lstlisting}
ip.access unit_id 1801 0
\end{lstlisting}
At this point the nanoBTS and OpenBSC configuration is done. 

\newpage
\subsection{Installation and configuration of GNSS assistance software}
\label{sec:appendSoft}
To install the RRLP software that generates GNSS assistance data several
libraries are required to be installed, \textit{cURL}\footnote{It may happen that
the given download URLs are wrong and in the meantime have changed, but one
can easily find the latest versions on \url{http://curl.haxx.se/} and \url{http://www.hyperrealm.com/libconfig/}}, 
\textit{libconfig} and \textit{SQLite}. \textit{cURL} was used
for the purpose of safely downloading GNSS data from the 
Navigation Center of the US Coast Guard and Trimble server. \textit{libconfig}
library is used for reading in the configuration file, this
way compiling of the software whenever one changes the settings was avoided. The
\textit{SQLite} library was employed to access the database used by OpenBSC to
store the respondence data from the mobile stations.
\begin{lstlisting}[backgroundcolor=\color{light-gray}][numbers = none]
cd ~/gsm_localization
sudo apt-get install libsqlite3-dev
wget http://curl.haxx.se/download/curl-7.25.0.tar.gz
wget http://www.hyperrealm.com/libconfig/libconfig-1.4.8.tar.gz
tar -xvzf curl-7.25.0.tar.gz
tar -xvzf libconfig-1.4.8.tar.gz
cd curl-7.25.0
make
sudo make install
cd ..
cd libconfig-1.4.8/
./configure
make
sudo make install
\end{lstlisting}

Once the libraries have been successfully installed, the user may proceed 
with the configuration and compiling the GNSS assistance software, which is the
key software produced in this thesis. The configuration file can be found in the
same directory as the RRLP modules under the name: ``gnssrrlp.cfg''. The sample
configuration file is already preconfigured for the location of ``Angewandte
Mathematik und Rechenzentrum'' building. Latitude and longitude of the BTS are
expressed in decimal degrees and are bounded by \textpm90\textdegree and 
\textpm180\textdegree respectively. Positive latitudes are north of the equator,
whereas negative are south of the equator. It is alike for longitude coordinates, positive
longitudes are east of Prime Meridian and negative are west of the Prime Meridian. 
If the position in decimal degrees of the BTS is unknown, it is straightforward to derive
them using the formula given in \eqref{eq:dd}, where $D$ are degrees, $M$ are 
minutes and $S$ are seconds\footnote{An online converter of the Federal 
Communication Commission can be used as well to convert from degrees, minutes
and seconds to decimal degrees and vice versa
\url{http://transition.fcc.gov/mb/audio/bickel/DDDMMSS-decimal.html}}.
\begin{equation}
\label{eq:dd}
\centering
DD = D + \frac{M}{60} + \frac{S}{3600}
\end{equation}
The altitude may be left as it is, set to 0, since it is not used in the current
measurement technique\footnote{If the value is set to zero,
it is important to set it to 0.0 because \textit{libconfig} would otherwise
convert it to an integer however it is a floating point number.}. \todo{Describe other
parameters as well.}

\begin{lstlisting}
// An example configuration file for the GNSS RRLP software.
name = "Configuration for GNSS and RRLP";

// Change the settings if required:
settings =
{
  config = ( { 
    ephemeris_url  = "ftp://ftp.trimble.com/pub/eph/CurRnxN.nav";
    almanac_url = "http://www.navcen.uscg.gov/ ?pageName=currentAlmanac&format=yuma";
    latitude_of_BTS  = 48.003601;
    longitude_of_BTS    = 7.848056; 
    altitude_of_BTS  = 0.0; 
    uncertainty_of_lat_long  = 7; 
    uncertainty_of_alt  = 7; 
    confidence_level    = 0; 
    ephemeris_repair  = false; 
    use_reference_time  = false; 
    extra_seconds_to_add  = 7; 
    timezone_of_BTS  = 1; 
    time_to_refresh_ephem = 1;
    time_to_refresh_alm = 1 ; } );
};
\end{lstlisting}


\todo{CHECK IF THIS IS CORRECT}
\label{accuracyUncertainty}
The uncertainty of the latitude and longitude correctness can be described
using equation \eqref{eq:unclatlong} \citep{3gppequations}. The uncertainty of
$r$ is expressed in meters, it defines how accurate is the specified location
of the BTS. In the configuration file, $K$ is set to 7, which corresponds to
$r$ = 9.4872 m. Instead of using the integer parameter $K$ as the known variable,
the equation \eqref{eq:unclatlong} can be rewritten as in \eqref{eq:unclatlongnew}, 
where we can get the integer value $K$ for a previously selected $r$.
\begin{equation}
\label{eq:unclatlong}
\centering
\begin{array}{l}
\displaystyle r=C((1+x)^{K}-1) \\
\displaystyle \\
\displaystyle where \left\{ \begin{array}{rcl}
 C & = & 10 \\ 
 x & = & 0.1 \\
 K & \in & [0,127] \cap \mathbb{N}_{0}
\end{array}\right.
\end{array}
\end{equation}

\begin{equation}
\label{eq:unclatlongnew}
\centering
\begin{array}{l}
\displaystyle K=\bigg\lceil\frac{ln(\frac{r}{C}+1)}{ln(1+x)}\bigg\rceil \\
\displaystyle \\
\displaystyle where \left\{ \begin{array}{rcl}
 C & = & 10 \\ 
 x & = & 0.1 \\
 r & \in & [0,1800]\, \mathrm{km}
\end{array}\right.
\end{array}
\end{equation}

A set of uncertainties $r$ is given in table \ref{tab:unclatlong} for various integer values of $K$.
\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Value of $K$ & Value of uncertainty $r$\\
\hline
0 & 0 m\\
\hline
1 & 1 m \\
\hline
2 & 2.1 m\\
\hline
3 & 3.3 m\\
\hline
- & - \\
\hline
20 & 57.3 m\\
\hline
- & -\\
\hline 
60 & 3.0348 km\\
\hline 
- & -\\
\hline 
100 & 137.8 km\\
\hline 
- & -\\
\hline 
\end{tabular}
\caption{Example uncertainties (latitude and longitude) for various integer values of $K$}
\label{tab:unclatlong}
\end{table}

Altitude uncertainty can be described using the same Binomial expansion method,
as given in \eqref{eq:uncalt},
however with altered constant values \citep{3gppequations}. The altitude uncertainty ranges between 0 m and 
990.5 m ($h\in[0,990.5]\, \mathrm{m}$). Although the same constant name $K$ is used, it
describes the altitude uncertainty, \eqref{eq:uncaltnew}.

\begin{equation}
\label{eq:uncalt}
\centering
\begin{array}{l}
\displaystyle h=C((1+x)^{K}-1) \\
\displaystyle \\
\displaystyle where \left\{ \begin{array}{rcl}
 C & = & 45 \\ 
 x & = & 0.025 \\
 K & \in & [0,127] \wedge \|K\|
\end{array}\right.
\end{array}
\end{equation}

\begin{equation}
\label{eq:uncaltnew}
\centering
\begin{array}{l}
\displaystyle K=\bigg\lceil\frac{ln(\frac{h}{C}+1)}{ln(1+x)}\bigg\rceil \\
\displaystyle \\
\displaystyle where \left\{ \begin{array}{rcl}
 C & = & 45 \\ 
 x & = & 0.025 \\
 h & \in & [0,990.5]\, \mathrm{m}
\end{array}\right.
\end{array}
\end{equation}

A set of uncertainties $h$ is given in table \ref{tab:uncalt} for various integer values of $K$.
\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Value of $K$ & Value of uncertainty $h$\\
\hline
0 & 0 m\\
\hline
1 & 1.13 m \\
\hline
2 & 2.28 m\\
\hline
3 & 3.46 m\\
\hline
- & - \\
\hline
20 & 28.74 m\\
\hline
- & -\\
\hline 
60 & 152.99 m\\
\hline 
- & -\\
\hline 
100 & 486.62 m\\
\hline 
- & -\\
\hline 
\end{tabular}
\caption{Example uncertainties (altitude) for various integer values of $K$}
\label{tab:uncalt}
\end{table}

Confidence level is the next parameter in the configuration file that needs to be set.
It can take any integer value between 0 and 127. The confidence level defines the
percentage of the confidence that the target entity, the GSM user one wants to locate, is within
the geometric shape defined earlier. A value of 0 and between 100 and 127, may be 
interpreted as ``no information'' \citep{3gppequations}. The reason why the values are not
limited to 100 is because of the nature of binary numbers and that $2^6$ bits is not sufficient
to represent the number 100, but rather requires one bit more.

Confidence level is followed by the ephemeris repair option. Ephemeris repair is a variable 
of the boolean type, it can take two different values \textit{true} or \textit{false}. Ephemeris
data may contain errors or miss some satellite information \citep{NASA-Ephem-Errors}
\citep{Stanford-Ephem-Errors} and the ephemeris repair function, if set to true,
will take data of the previous measurement report. This introduces an error as well.

To increase the speed of measurement report, reference time can be used to provide extra
information for the A-GPS in the MS of target entity. This field is of boolean
type, if set to true, reference time is included in the sent packets. 

Since the sent packets are not transmitted in real time but put on a stack and 
then sent to the MS, a time delay exists. A solution to this problem is to 
add extra seconds to the reference time being sent. In order to assess
the amount of extra seconds to add, the GSM operator is required experimentally
to verify his/her findings. \todo{see how much the reference time can deviate from current time}.

The reference time being sent to the MS is Coordinated Universal Time (UTC). The GPS device 
receives UTC time from the satellites and adjusts the computer time. To set the correct 
time, time zone offset of the BTS ought to be set correctly.

Finally, the refresh time of downloading new almanac and ephemeris data has to be set.
The variable uses the hour unit, how often the data are being downloaded. If the data are
used from a local GNSS station, refresh time of the ephemeris data should be set to
every 30 minutes or 0.5 hours. The almanac data are valid for up to 180 days \citep{GPS-Guide} but are updated
usually every day\footnote{Almanac update times can be found here:
\url{http://www.navcen.uscg.gov/?pageName=currentNanus&format=txt}} \citep{GPS-Pentagon}.
\newpage

\section{Sourcecode}
Example:
\lstset{%
caption=,%
label=lst:example,%
}
\begin{lstlisting}
#include <stdio.h>
 
int main(void)
{
    printf("Hallo Welt!\n");
    return 0;
}
\end{lstlisting}

\section{GPS Constants and equations}
\label{sec:gpsConsAndEq}
\begin{alignat}{4}
 & A & = & \; (\sqrt{A})^2 \nonumber \\
 & n_{0} & = &\; \sqrt{\frac{\mu}{A^3}} \nonumber \\
 & t_{k} & = &\; t-t_{oe} \nonumber \\
 & n & = &\; n_{0} + \Delta n \nonumber \\
 & M_{k} & = &\; M_{0} + nt_{k} \nonumber \\
 & M_{k} & = &\; E_{k} - e\sin E_{k} \nonumber \\
 & v_{k} & = & \tan ^{-1} \left( \frac{\sin v_{k}}{\cos v_{k}} \right) = \tan ^{-1} \left( \frac{\frac{\sqrt{1-e^2} \sin E_{k}}{1-e \cos E_{k}}}{\frac{\cos E_{k}-e}{1-e\cos E_{k}}} \right) \nonumber \\
 & v_{k} & = & \tan ^{-1} \left( \frac{\sin v_{k}}{\cos v_{k}} \right) = \tan ^{-1} \left( \frac{\sqrt{1-e^2} \sin E_{k}/(1-e \cos E_{k})}{(\cos E_{k}-e)/(1-e\cos E_{k})} \right) = \tan ^{-1} \left( \frac{\sqrt{1-e^2} \sin E_{k}}{\cos E_{k} - e} \right) \nonumber \\
 & E_{k} & = & \cos ^{-1} \left( \frac{e+\cos v_{k}}{1+e \cos v_{k}} \right) \nonumber \\
 & \Phi_{k} & = &\; v_{k} + \omega \nonumber \\
 & \delta u_{k} & = &\;  c_{us} \sin{2\Phi_{k}} + C_{us} \cos{2\Phi_{k}}  \\
 & \delta r_{k} & = &\;  c_{rc} \cos{2\Phi_{k}} + C_{rs} \sin{2\Phi_{k}} \nonumber \\
 & \delta i_{k} & = &\;  c_{ic} \cos{2\Phi_{k}} + C_{is} \sin{2\Phi_{k}} \nonumber \\
 & u_{k} & = &\;  \Phi_{k} + \delta u_{k} \nonumber \\
 & r_{k} & = &\; A(1-e\cos{E_{k}})+\delta r_{k} \nonumber \\
 & i_{k} & = &\; i_{0} + \delta i_{k} + (IDOT)t_{k} \nonumber \\
 & x_{k}^{'} & = &\; r_{k} \cos{u_{k}} \nonumber \\
 & y_{k}^{'} & = &\; r_{k} \sin{u_{k}} \nonumber \\
 & \Omega_{k} & = &\; \Omega_{0} + (\Omega - \Omega_{e})t_{k} - \Omega_{e}t_{oe} \nonumber \\
 & x & = &\; x_{k}^{'} \cos{\Omega_{k}}-y_{k}^{'}\cos{i_{k}}\sin{\Omega_{k}} \nonumber \\
 & y & = &\; x_{k}^{'} \sin{\Omega_{k}}-y_{k}^{'}\cos{i_{k}}\cos{\Omega_{k}} \nonumber \\
 & z & = &\; y_{k}^{'} \sin{i_{k}} \nonumber
\end{alignat}

\begin{equation}
\label{eq:paramconst1}
  \begin{split}
  \mu_{e} = 3.986004418\cdot 10^{14} \frac{m^3}{s^2}
  \end{split}
\quad\Longleftarrow\quad
  \begin{split}
    \mbox{Geocentric gravitational constant}
  \end{split}
\end{equation}


\begin{equation}
\label{eq:paramconst2}
  \begin{split}
  c= 2.99792458\cdot 10^{8} \frac{m}{s}
  \end{split}
\quad\Longleftarrow\quad
  \begin{split}
    \mbox{speed of light}
  \end{split}
\end{equation}